A Numerical Fitting-Based Compact Model: An Effective Way to Extract Solar Cell Parameters


We have developed an electrical circuit-based compact numerical fitting model to determine industry-related physical parameters of solar cells utilizing only 3–8 current–voltage coordinate points without any specific selection of an experimental coordinate axis. The proposed compact numerical fitting model was effectively tested to determine the peak power point, fill factor and efficiencies for organic and inorganic solar cells, as well as for solar panels. This research facilitates cost-effective energy management of solar modules and farms.

This is a preview of subscription content, log in to check access.


  1. 1.

    F. Yu, G. Huang, W. Lin, and C. Xu, IEEE Trans. Electron Devices 66, 670 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    X. Gao, Y. Cui, J. Hu, G. Xu, Z. Wang, J. Qu, and H. Wang, Energy Convers. Manag. 157, 460 (2018).

    Article  Google Scholar 

  3. 3.

    F. Yu, G. Huang, and C. Xu, Renew. Energy 146, 2188 (2020).

    CAS  Article  Google Scholar 

  4. 4.

    V.J. Chin and Z. Salam, Appl. Energy 237, 519 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    S.P. Aly, S. Ahzi, and N. Barth, Appl. Energy 236, 728 (2019).

    Article  Google Scholar 

  6. 6.

    X. Sun, T. Silverman, R. Garris, C. Deline, and M.A. Alam, IEEE J. Photovolt. 6, 1298 (2016).

    Article  Google Scholar 

  7. 7.

    H. Saleem and S. Karmalkar, IEEE Electron Device Lett. 30, 349 (2009).

    Article  Google Scholar 

  8. 8.

    S. Karmalkar and H. Saleem, IEEE Electron Device Lett. 29, 449 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    S. Karmalkar and H. Saleem, Sol. Energy Mater. Sol. Cells 95, 1076 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    C. Zhang, J. Zhang, Y. Hao, Z. Lin, and C. Zhu, J. Appl. Phys. 110, 064504 (2011).

    Article  Google Scholar 

  11. 11.

    K. Ishibashi, Y. Kimura, and M. Niwano, J. Appl. Phys. 103, 094507 (2008).

    Article  Google Scholar 

  12. 12.

    J.C.H. Phang, D.S.H. Chan, and J.R. Phillips, Electron. Lett. 20, 406 (1984).

    Article  Google Scholar 

  13. 13.

    A. Jain and A. Kapoor, Sol. Energy Mater. Sol. Cells 81, 269 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    X. Gao, Y. Cui, J. Hu, N. Tahir, and G. Xu, Energy Convers. Manag. 171, 1822 (2018).

    Article  Google Scholar 

  15. 15.

    A. Jain, S. Sharma, and A. Kapoor, Sol. Energy Mater. Sol. Cells 90, 25 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    J. Ding and R. Radhakrishnan, Sol. Energy Mater. Sol. Cells 92, 1566 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    W. Kim and W. Choi, Sol. Energy 84, 1008 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    F. Khan, S.N. Singh, and M. Husain, Sol. Energy 85, 2288 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    F. Ghani and M. Duke, Sol. Energy 85, 2386 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    P. Singh, M. Lal, and S.N. Singh, Sol. Energy Mater. Sol. Cells 91, 137 (2007).

    Article  Google Scholar 

  21. 21.

    M.-K. Lee, J.-C. Wang, S.-F. Horng, and H.-F. Meng, Sol. Energy Mater. Sol. Cells 94, 578 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    J. Hyung Lee, Y. Hyun Lee, J. Yong Ahn, and J.-W. Jeong, in 19th International Photovoltaic Science and Engineering Conference and Exhibition. PVSEC-19 Jeju Korea 9–13 November, 2009, vol. 95 (2011), p. 22.

  23. 23.

    J. Lauwaert, K. Decock, S. Khelifi, and M. Burgelman, Sol. Energy Mater. Sol. Cells 94, 966 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    C. Chibbaro, M. Zimbone, G. Litrico, P. Baeri, M.L. Lo Trovato, and F. Aleo, J. Appl. Phys. 110, 044505 (2011).

    Article  Google Scholar 

  25. 25.

    W. Liu, L. Hu, S. Dai, L. Guo, N. Jiang, and D. Kou, Electrochim. Acta 55, 2338 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    D.S.H. Chan, J.R. Phillips, and J.C.H. Phang, Solid-State Electron. 29, 329 (1986).

    CAS  Article  Google Scholar 

  27. 27.

    T.O. Saetre, O.-M. Midtgård, and G.H. Yordanov, Renew. Energy 36, 2171 (2011).

    Article  Google Scholar 

  28. 28.

    Y. Chen, X. Wang, D. Li, R. Hong, and H. Shen, Appl. Energy 88, 2239 (2011).

    Article  Google Scholar 

  29. 29.

    D. Tan, C.T. Chua, G.K. Dalapati, and D. Chi, Thin Solid Films 520, 2336 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    G.K. Dalapati, S.L. Liew, A.S.W. Wong, Y. Chai, S.Y. Chiam, and D.Z. Chi, Appl. Phys. Lett. 98, 013507 (2011).

    Article  Google Scholar 

  31. 31.

    S.L. Liew, Y. Chai, H.R. Tan, H.K. Hui, A.S.W. Wong, G.K. Dalapati, and D.Z. Chi, J. Electrochem. Soc. 159, H52 (2011).

    Article  Google Scholar 

  32. 32.

    A. Ortiz-Conde, F.J. García Sánchez, and J. Muci, Sol. Energy Mater. Sol. Cells 90, 352 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    H. Bayhan and M. Bayhan, Sol. Energy 85, 769 (2011).

    Article  Google Scholar 

  34. 34.

    S. Masudy-Panah, S. Zhuk, H.R. Tan, X. Gong, and G.K. Dalapati, Nano Energy 46, 158 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    S. Zhuk, A. Kushwaha, T.K.S. Wong, S. Masudy-Panah, A. Smirnov, and G.K. Dalapati, Sol. Energy Mater. Sol. Cells 171, 239 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    G.K. Dalapati, S. Masudy-Panah, A. Kumar, C. Cheh Tan, H. Ru Tan, and D. Chi, Sci. Rep. 5, 17810 (2015).

    Article  Google Scholar 

  37. 37.

    S. Zhuk, T.K.S. Wong, S.S. Hadke, S. Lie, A. Guchhait, Y. Gao, L.H. Wong, S. Cheng, X. Wang, and G.K. Dalapati, Sol. Energy 194, 777 (2019).

    CAS  Article  Google Scholar 

Download references


SM and GKD thank SRM University, AP research funding for financial support. SM acknowledge SERB- DST, Govt. of India for Early Career Research Award Grants (ECR/2017/001937). SR acknowledges the support provided by NUS Hybrid-Integrated Flexible (Stretchable) Electronic Systems (HiFES) Program Seed Fund (grant no. R265000628133).

Author information



Corresponding authors

Correspondence to Sabyasachi Mukhopadhyay or Goutam Kumar Dalapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, S., Ramakrishna, S., Kumar, A. et al. A Numerical Fitting-Based Compact Model: An Effective Way to Extract Solar Cell Parameters. Journal of Elec Materi (2020). https://doi.org/10.1007/s11664-020-08286-5

Download citation


  • Compact model
  • solar cell
  • Thiele technique
  • series resistance