Recycled MnO2 Nanoflowers and Graphene Nanosheets for Low-Cost and High Performance Asymmetric Supercapacitor


Electrochemical materials, namely MnO2 and reduced graphene oxide (rGO), have been prepared in diverse morphologies (nanoflowers and nanosheets, respectively). Different physical and chemical characterizations were conducted to investigate the material structure and morphology. Electrochemical properties of these materials have been studied comprehensively using cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy to evaluate their suitability for supercapacitive energy storage. MnO2 nanoflowers were obtained by recycling spent batteries. The single electrodes of MnO2 nanoflowers and rGO nanosheets exhibit a high specific capacitance of 208.5 F g−1 and 145 F g−1, respectively. Therefore, an asymmetrical supercapacitor was fabricated from both materials and electrochemically evaluated. It shows a superb supercapacitive performance of up to 2.0 V in Na2SO4. The asymmetrical supercapacitor produces a high specific capacitance (177.6 F g−1), energy density (24.7 Wh kg−1) and stability (95.2% over 4000 cycles). The findings recommend using MnO2 nanoflowers and rGO nanosheets as an asymmetric supercapacitor.

This is a preview of subscription content, log in to check access.


  1. 1.

    H. Zhang, L. Zhang, J. Chen, H. Su, F. Liu, and W. Yang, J. Power Sour. 315, 120 (2016).

    CAS  Google Scholar 

  2. 2.

    H. Su, H. Huang, H. Zhang, X. Chu, B. Zhang, B. Gu, X. Zheng, S. Wu, W. He, C. Yan, J. Chen, and W. Yang, ACS Appl. Energy Mater. 1, 3544 (2018).

    CAS  Google Scholar 

  3. 3.

    H. Su, H. Huang, S. Zhao, Y. Zhou, S. Xu, H. Pan, B. Gu, X. Chu, W. Deng, H. Zhang, H. Zhang, J. Chen, W. Yang, and A.C.S. Appl, Mater. Interfaces 12, 2773 (2020).

    CAS  Google Scholar 

  4. 4.

    G. Zan, T. Wu, P. Hu, Y. Zhou, S. Zhao, S. Xu, J. Chen, Y. Cui, and Q. Wu, Energy Storage Mater. 28, 82 (2020).

    Google Scholar 

  5. 5.

    G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, and Z. Bao, Nano Lett. 11, 2905 (2011).

    CAS  Google Scholar 

  6. 6.

    E.A.A. Aboelazm, G.A.M. Ali, H. Algarni, H. Yin, Y.L. Zhong, and K.F. Chong, J. Phys. Chem. C 122, 12200 (2018).

    CAS  Google Scholar 

  7. 7.

    G.A.M. Ali, O.A. Fouad, S.A. Makhlouf, M.M. Yusoff, and K.F. Chong, J. Solid State Electrochem. 18, 2505 (2014).

    CAS  Google Scholar 

  8. 8.

    E.K. Kim, N.K. Shrestha, W. Lee, G. Cai, and S.H. Han, Mater. Chem. Phys. 155, 211 (2015).

    CAS  Google Scholar 

  9. 9.

    K. Wang, H. Wu, Y. Meng, and Z. Wei, Small 10, 14 (2014).

    CAS  Google Scholar 

  10. 10.

    E.A.A. Aboelazm, G.A.M. Ali, H. Algarni, and K.F. Chong, Curr. Nanosci. 14, 1 (2018).

    Google Scholar 

  11. 11.

    H. Bigdeli, M. Moradi, S. Borhani, E.A. Jafari, S. Hajati, and M.A. Kiani, Phys. E 100, 45 (2018).

    CAS  Google Scholar 

  12. 12.

    J. Yesuraj, E. Elanthamilan, B. Muthuraaman, S.A. Suthanthiraraj, and J.P. Merlin, J. Electron. Mater. 48, 7239 (2019).

    CAS  Google Scholar 

  13. 13.

    G.A.M. Ali, A. Divyashree, S. Supriya, K.F. Chong, A.S. Ethiraj, M. Reddy, H. Algarni, and G. Hegde, Dalton Trans. 46, 14034 (2017).

    CAS  Google Scholar 

  14. 14.

    C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Nano Lett. 10, 4863 (2010).

    CAS  Google Scholar 

  15. 15.

    G.A.M. Ali, S.A.A. Manaf, D. A, K.F. Chong, and G. Hegde, J. Energy Chem. 25(4), 734 (2016).

  16. 16.

    I. Grygorchak, R. Shvets, I.V. Kityk, A.V. Kityk, R. Wielgosz, O. Hryhorchak, and I. Shchur, Phys. E 108, 164 (2019).

    CAS  Google Scholar 

  17. 17.

    J. Zhang, S. Ali, F. Liu, A. Ali, K. Wang, and X. Wang, J. Electron. Mater. 48, 4196 (2019).

    CAS  Google Scholar 

  18. 18.

    W. Liu, J. Chen, Z. Chen, K. Liu, G. Zhou, Y. Sun, M.-S. Song, Z. Bao, and Y. Cui, Adv. Energy Mater. 7, 1701076 (2017).

    Google Scholar 

  19. 19.

    K. Liu, B. Kong, W. Liu, Y. Sun, M.-S. Song, J. Chen, Y. Liu, D. Lin, A. Pei, and Y. Cui, Joule 2, 1857 (2018).

    CAS  Google Scholar 

  20. 20.

    J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L.-Q. Chen, J. Qin, and Y. Cui, Nat. Nanotechnol. 14, 705 (2019).

    CAS  Google Scholar 

  21. 21.

    S.-M. Xu, X. Liang, X.-Y. Wu, S.-L. Zhao, J. Chen, K.-X. Wang, and J.-S. Chen, Nat. Commun. 10, 5810 (2019).

    CAS  Google Scholar 

  22. 22.

    H. Jang, S. Suzuki, and M. Miyayama, J. Electrochem. Soc. 159, 1425 (2012).

    Google Scholar 

  23. 23.

    H. Wei, J. Wang, S. Yang, Y. Zhang, T. Li, and S. Zhao, Phys. E 83, 41 (2016).

    CAS  Google Scholar 

  24. 24.

    S.L. Chou, F.Y. Cheng, and J. Chen, J. Power Sour. 162, 727 (2006).

    CAS  Google Scholar 

  25. 25.

    T. Yousefi, A.N. Golikand, M. Hossein Mashhadizadeh, and M. Aghazadeh, J. Solid State Chem. 190, 202 (2012).

    CAS  Google Scholar 

  26. 26.

    T. Yousefi, R. Davarkhah, A.N. Golikand, and M.H. Mashhadizadeh, Mater. Sci. Semicond. Process. 16, 868 (2013).

    CAS  Google Scholar 

  27. 27.

    G. Yang, B. Wang, W. Guo, Z. Bu, C. Miao, T. Xue, and H. Li, Mater. Res. Bull. 47, 3120 (2012).

    CAS  Google Scholar 

  28. 28.

    M. Dong, Y.X. Zhang, H.F. Song, X. Qiu, X.D. Hao, C.P. Liu, Y. Yuan, X.L. Li, and J.M. Huang, Phys. E 45, 103 (2012).

    CAS  Google Scholar 

  29. 29.

    D. Yan, Z. Guo, G. Zhu, Z. Yu, H. Xu, and A. Yu, J. Power Sour. 199, 409 (2012).

    CAS  Google Scholar 

  30. 30.

    G.A.M. Ali, M.M. Yusoff, E.R. Shaaban, and K.F. Chong, Ceram. Int. 43, 8440 (2017).

    CAS  Google Scholar 

  31. 31.

    G.A.M. Ali, L.L. Tan, R. Jose, M.M. Yusoff, and K.F. Chong, Mater. Res. Bull. 60, 5 (2014).

    CAS  Google Scholar 

  32. 32.

    M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    CAS  Google Scholar 

  33. 33.

    P.E. Marina, G.A.M. Ali, L.M. See, E.Y.L. Teo, E.-P. Ng, and K.F. Chong, Arabian J. Chem. 12, 3883 (2019).

    Google Scholar 

  34. 34.

    G.A.M. Ali, M.R. Thalji, W.C. Soh, H. Algarni, and K.F. Chong, J. Solid State Electrochem. 24, 25 (2020).

    CAS  Google Scholar 

  35. 35.

    G.A.M. Ali, M.M. Yusoff, H. Algarni, and K.F. Chong, Ceram. Int. 44, 7799 (2018).

    CAS  Google Scholar 

  36. 36.

    V. Ganesh, S. Pitchumani, and V. Lakshminarayanan, J. Power Sour. 158, 1523 (2006).

    CAS  Google Scholar 

  37. 37.

    J. Yin and J. Park, J. Solid State Electrochem. 19, 2391 (2015).

    CAS  Google Scholar 

  38. 38.

    A.S. Adekunle, K.I. Ozoemena, B.B. Mamba, B.O. Agboola, and O.S. Oluwatobi, Int. J. Electrochem. Sci. 6, 4760 (2011).

    CAS  Google Scholar 

  39. 39.

    W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    CAS  Google Scholar 

  40. 40.

    G.A.M. Ali, S.A. Makhlouf, M.M. Yusoff, and K.F. Chong, Rev. Adv. Mater. Sci. 40, 35 (2015).

    Google Scholar 

  41. 41.

    A. Bello, O.O. Fashedemi, M. Fabiane, J.N. Lekitima, K.I. Ozoemena, and N. Manyala, Electrochim. Acta 114, 48 (2013).

    CAS  Google Scholar 

  42. 42.

    P.-C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, ACS Nano 4, 4403 (2010).

    CAS  Google Scholar 

  43. 43.

    E.A.A. Aboelazm, G.A.M. Ali, and K.F. Chong, Chem. Adv. Mater. 3, 67 (2018).

    Google Scholar 

  44. 44.

    Z. Bo, Z. Wen, H. Kim, G. Lu, K. Yu, and J. Chen, Carbon 50, 4379 (2012).

    CAS  Google Scholar 

  45. 45.

    L. Demarconnay, E. Raymundo-Piñero, and F. Béguin, Electrochem. Commun. 12, 1275 (2010).

    CAS  Google Scholar 

  46. 46.

    T.H. Lee, D.T. Pham, R. Sahoo, J. Seok, T.H.T. Luu, and Y.H. Lee, Energy Storage Mater. 12, 223 (2018).

    Google Scholar 

  47. 47.

    G.A.M. Ali, O.A. Habeeb, H. Algarni, and K.F. Chong, J. Mater. Sci. 54, 683 (2019).

    CAS  Google Scholar 

  48. 48.

    S. Trasatti and O. Petrii, Pure Appl. Chem. 63, 711 (1991).

    CAS  Google Scholar 

  49. 49.

    S. Trasatti and O. Petrii, J. Electroanal. Chem. 327, 353 (1992).

    CAS  Google Scholar 

  50. 50.

    J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, and M. Chesneau, J. Power Sour. 101, 109 (2001).

    CAS  Google Scholar 

  51. 51.

    G.A.M. Ali, O.A.G. Wahba, A.M. Hassan, O.A. Fouad, and K.F. Chong, Ceram. Int. 41, 8230 (2015).

    CAS  Google Scholar 

  52. 52.

    D.P. Dubal, D.S. Dhawale, T.P. Gujar, and C.D. Lokhande, Appl. Surf. Sci. 257, 3378 (2011).

    CAS  Google Scholar 

  53. 53.

    P. Yu, X. Zhang, Y. Chen, and Y. Ma, Mater. Lett. 64, 1480 (2010).

    CAS  Google Scholar 

  54. 54.

    M.S. Hong, S.H. Lee, and S.W. Kim, Electrochem. Solid-State Lett. 5, A227 (2002).

    CAS  Google Scholar 

  55. 55.

    X. Yang, Y.S. He, G. Jiang, X.Z. Liao, and Z.F. Ma, Electrochem. Commun. 13, 1166 (2011).

    CAS  Google Scholar 

  56. 56.

    M.S. Kishore, P. Srimathi, S. Kumar, S. Addepalli, S. Swaminathan, V. Tilak, and R. Colborn, Bull. Mater. Sci. 36, 667 (2013).

    CAS  Google Scholar 

  57. 57.

    Y. Qian, S. Lu, and F. Gao, J. Mater. Sci. 46, 3517 (2011).

    CAS  Google Scholar 

  58. 58.

    G.A.M. Ali, E.Y. Lih Teo, E.A.A. Aboelazm, H. Sadegh, A.O.H. Memar, R. Shahryari-Ghoshekandi, and K.F. Chong, Mater. Chem. Phys. 197, 100 (2017).

    CAS  Google Scholar 

  59. 59.

    T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Bélanger, Appl. Phys. A 82, 599 (2006).

    CAS  Google Scholar 

  60. 60.

    G.A.M. Ali, S.A. Abdul Manaf, A. Kumar, K.F. Chong, and G. Hegde, J. Phys. D 47, 495307 (2014).

    Google Scholar 

  61. 61.

    A. Yuan and Q. Zhang, Electrochem. Commun. 8, 1173 (2006).

    CAS  Google Scholar 

  62. 62.

    L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, and H.Y. Wu, J. Phys. Chem. C 118, 22865 (2014).

    CAS  Google Scholar 

  63. 63.

    C. Xu, H. Du, B. Li, F. Kang, and Y. Zeng, J. Electrochem. Soc. 156, A435 (2009).

    CAS  Google Scholar 

  64. 64.

    Y. Liu, D. He, H. Wu, J. Duan, and Y. Zhang, Electrochim. Acta 164, 154 (2015).

    CAS  Google Scholar 

  65. 65.

    E. Miniach, A. Śliwak, A. Moyseowicz, L. Fernández-Garcia, Z. González, M. Granda, R. Menendez, and G. Gryglewicz, Electrochim. Acta 240, 53 (2017).

    CAS  Google Scholar 

  66. 66.

    V. Khomenko, E. Raymundo-Piñero, and F. Béguin, J. Power Sour. 153, 183 (2006).

    CAS  Google Scholar 

  67. 67.

    S. Wu, W. Chen, and L. Yan, J. Phys. Chem. A 2, 2765 (2014).

    CAS  Google Scholar 

  68. 68.

    C.J. Jafta, F. Nkosi, L. le Roux, M.K. Mathe, M. Kebede, K. Makgopa, Y. Song, D. Tong, M. Oyama, N. Manyala, S. Chen, and K.I. Ozoemena, Electrochim. Acta 110, 228 (2013).

    CAS  Google Scholar 

  69. 69.

    Z.J. Fan, J. Yan, T. Wei, L.J. Zhi, G.Q. Ning, T.Y. Li, and F. Wei, Adv. Funct. Mater. 21, 2366 (2011).

    CAS  Google Scholar 

  70. 70.

    R. Borgohain, J. Li, J.P. Selegue, and Y.T. Cheng, J. Phys. Chem. C 116, 15068 (2012).

    CAS  Google Scholar 

Download references


Dr. Gomaa A.M. Ali would like to express his gratitude to Associate Prof. Kwok Feng Chong (Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang) for his help and for providing the tools during conducting the experiments.

Author information



Corresponding author

Correspondence to Gomaa A. M. Ali.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 447 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, G.A.M. Recycled MnO2 Nanoflowers and Graphene Nanosheets for Low-Cost and High Performance Asymmetric Supercapacitor. Journal of Elec Materi (2020).

Download citation


  • Asymmetric supercapacitor
  • energy storage
  • graphene nanosheets
  • MnO2 nanoflowers