Molecule–Electrode Electronic Coupling Modulates Optoelectronics of (Bio)Molecular Junctions

Abstract

The charge transport across a molecular junction formed by sandwiching molecules between two electrodes in testbed architectures depends not only on the work function of the metal electrodes and energy gap of the molecules but also on the efficacy of the molecule–electrode electronic coupling. Insights into such molecule–electrode coupling would help to understand the relation between the coupling strength and electron transport processes. With this aim, the optoelectronic modulation across bacteriorhodopsin-based molecular junctions has been studied using experimental current–voltage traces obtained by conducting-probe atomic force microscopy under various illuminations. The energy barrier \( \left( {\varepsilon_{0} } \right) \), molecule–electrode coupling (Γg), and other transport parameters were determined utilizing the Landauer model with a single-Lorentzian transmission function, transition voltage spectroscopy, and the law of corresponding states in the universal tunneling model approach. The findings reveal that the optoelectronic modulation of bacteriorhodopsin molecular junctions originate from alteration of the molecule–electrode coupling, which could originate from modulation of electronic states and the electrostatic environment of retinal chromophores made of the protein under dark and green or green–blue illumination conditions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S.S. Panda, H.E. Katz, and J.D. Tovar, Chem. Soc. Rev. 47, 3640 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    J.J. Davis, D.A. Morgan, C.L. Wrathmell, D.N. Axford, J. Zhao, and N. Wang, J. Mater. Chem. 15, 2160 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    I. Ron, L. Sepunaru, S. Itzhakov, T. Belenkova, N. Friedman, I. Pecht, M. Sheves, and D. Cahen, J. Am. Chem. Soc. 132, 4131 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    O. Berthoumieu, A.V. Patil, W. Xi, L. Aslimovska, J.J. Davis, and A. Watts, Nano Lett. 12, 899 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    A.V. Patil, T. Premaruban, O. Berthoumieu, A. Watts, and J.J. Davis, J. Phys. Chem. B 116, 683 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Y.D. Jin, N. Friedman, M. Sheves, and D. Cahen, Adv. Funct. Mater. 17, 1417 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    A.V. Patil, T. Premaraban, O. Berthoumieu, A. Watts, and J.J. Davis, Chem. Eur. J. 18, 5632 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    T. Ando, Mesoscopic Physics and Electronics, ed. T. Ando, Y. Arakawa, K. Furuya, S. Komiyama, and H. Nakashima (Berlin: Springer, 1998), pp. 11–14.

    Google Scholar 

  9. 9.

    A. Vilan, J. Phys. Chem. C 111, 4431 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    A. Vilan, D. Cahen, and E. Kraisler, ACS Nano 7, 695 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    M. Ben-Nun, J. Quenneville, and T.J. Martínez, J. Phys. Chem. A 104, 5161 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    C. Punwong, T.J. Martínez, and S. Hannongbua, Chem. Phys. Lett. 610–611, 213 (2014).

    Article  Google Scholar 

  13. 13.

    E. Nango, et’al., Science 354, 1552 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    J. Allen, F1000 Fac. Rev. Res. 8, 211 (2019).

    Article  Google Scholar 

  15. 15.

    L. Sepunaru, N. Friedman, I. Pecht, M. Sheves, and D. Cahen, J. Am. Chem. Soc. 134, 4169 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

K.R. acknowledges financial support from the Department of Physics, and SRM University research program for her doctoral fellowship. S.M. acknowledges SERB-DST, Govt. of India for Early Career Research Award Grants (ECR/2017/001937), Molecule–Electrode Electronic Coupling Modulates Optoelectronics of (Bio)Molecular Junctions and SRM University research funding for financial support. We acknowledge support from the Chemical Research Support group of WIS, Israel for experimental facilities and scientific discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kunchanapalli Ramya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1518 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramya, K., Mukhopadhyay, S. Molecule–Electrode Electronic Coupling Modulates Optoelectronics of (Bio)Molecular Junctions. Journal of Elec Materi (2020). https://doi.org/10.1007/s11664-020-08263-y

Download citation

Keywords

  • Biomaterials
  • molecular junctions
  • optoelectronics
  • electron transport