Optimization of Dynamic Source Resistance in a β-Ga2O3 HEMT and Its Effect on Electrical Characteristics

Abstract

The increase of bias-dependent source access resistance, rs, with high gate bias is attributed to a sharp drop in transconductance, gm, and current gain cut-off frequency, fT, of high-electron-mobility transistors (HEMTs). Consequently, source and drain implant regions (n++ cap regions) are commonly used to obtain expected results in experimental devices as predicted theoretically. This paper investigates the effect of different doping profiles in n++ cap regions using a finite space in access regions on gm and fT with increasing bias. The device under test (DUT) is a beta-gallium oxide (β-Ga2O3)-based HEMT using an AlN barrier to create polarization-induced two-dimensional electron gas (2DEG). Dynamic access resistance is optimized by lateral Gaussian n++ doping characteristics using a finite gap between the ohmic contacts and barrier layer, which ensures high RF device performance. The technology computer-aided design (TCAD) simulation results for source access resistance are validated with an appropriate analytical model. It is observed that the peak electric field in the source access region can be controlled to delay electron velocity saturation, which yields higher mobility and reduced access resistance.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S.J. Pearton, J. Yang, P.H. Cary IV, F. Ren, J. Kim, M.J. Tadjer, and M.A. Mastro, Appl. Phys. Rev. 5, 011301 (2018).

    Article  Google Scholar 

  2. 2.

    Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, Cryst. Res. Technol. 45, 1229 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    E.G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, J. Cryst. Growth 270, 420 (2004).

    Article  Google Scholar 

  4. 4.

    M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012).

    Article  Google Scholar 

  5. 5.

    Y. Kang, K. Krishnaswamy, H. Peelaers, and C. G. Van de Walle, J. Phys. Condens. Matter 29, 23, 234001 (2017).

  6. 6.

    K. Ghosh and U. Singisetti, J. Appl. Phys. 122, 035702 (2017).

    Article  Google Scholar 

  7. 7.

    T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S.P. DenBaars, U.K. Mishra, and I.E.E.E. Trans, Electron Device 52, 2117 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    T. Fang, R. Wang, H. Xing, S. Rajan, and D. Jena, IEEE Electron Device Lett. 33, 709 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    K. Shinohara, D. Regan, A. Corrion, D. Brown, S. Burnham, P. J. Willadsen, I. Alvarado-Rodriguez, M. Cunningham, C. Butler, A. Schmitz, and S. Kim, in IEEE International Electron Devices Meeting (2011)

  10. 10.

    S. Ghosh, S. A. Ahsan, Y. S. Chauhan, and S. Khandelwal, in IEEE International Conference on Electron Devices and Solid-State Circuits (2016), p. 247

  11. 11.

    P. Cui, H. Liu, W. Lin, Z. Lin, A. Cheng, M. Yang, Y. Liu, C. Fu, Y. Lv, and C. Luan, IEEE Trans. Electron Devices 64, 1038 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Z. Xia, H. Xue, C. Joishi, J. McGlone, N.K. Kalarickal, S.H. Sohel, M. Brenner, A. Arehart, S. Ringel, S. Lodha, W. Lu, and S. Rajan, IEEE Electron Device Lett. 40, 1052 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Zhang, A. Neal, Z. Xia, C. Joishi, J.M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, and G. Jessen, Appl. Phys. Lett. 112, 173502 (2018).

    Article  Google Scholar 

  14. 14.

    Maccioni, Maria Barbara, and Vincenzo Fiorentini. Applied Physics Express 9, 4, 041102 (2016)

  15. 15.

    W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, and G. Zhang, Nanoscale Res. Lett. 7, 562 (2012).

    Article  Google Scholar 

  16. 16.

    H. Sun, C.G. Torres Castanedo, L. Kaikai, L. Kuang-Hui, G. Wenzhe, L. Ronghui, L. Xinwei, L. Jingtao, L. Xiaohang, Appl. Phys. Lett. 111, 16, 162105 (2017)

  17. 17.

    Device Simulation Software, ATLAS User’s Manual (Santa Clara: Silvaco, 2009).

    Google Scholar 

  18. 18.

    T. Oshima, Y. Kato, N. Kawano, A. Kuramata, S. Yamakoshi, S. Fujita, T. Oishi, M. Kasu, Applied Physics Express 10, 3, 035701 (2017).

  19. 19.

    A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, M. Schubert, Phys. Rev. B Condens. Matter 96, 24, 245205 (2017)

  20. 20.

    Z. Zhang, E. Farzana, A.R. Arehart, and S.A. Ringel, Appl. Phys. Lett. 108, 052105 (2016).

    Article  Google Scholar 

  21. 21.

    O. Ambacher, R. Dimitrov, M. Stutzmann, B.E. Foutz, M.J. Murphy, J.A. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Chumbes, and B. Green, Phys. Status Solidi (b) 216, 381 (1999).

    CAS  Article  Google Scholar 

  22. 22.

    I.P. Smorchkova, S. Keller, S. Heikman, C.R. Elsass, B. Heying, P. Fini, J.S. Speck, and U.K. Mishra, Appl. Phys. Lett. 77, 3998 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 15; 56(16), R10024 (1997)

  24. 24.

    T. Zaki, R. Rodel, F. Letzkus, H. Richter, U. Zschieschang, H. Klauk, and J.N. Burghartz, IEEE Electron Device Lett. 34, 520 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This publication is an outcome of the SERB project and the collaborative R&D work undertaken in the project under the Visvesvaraya PhD Scheme of the Ministry of Electronics and Information Technology, Government of India, being implemented by Digital India Corporation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. R. Lenka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Lenka, T.R. & Nguyen, H.P.T. Optimization of Dynamic Source Resistance in a β-Ga2O3 HEMT and Its Effect on Electrical Characteristics. Journal of Elec Materi (2020). https://doi.org/10.1007/s11664-020-08261-0

Download citation

Keywords

  • 2DEG
  • β-Ga2O3
  • access resistance
  • HEMT
  • RF
  • transconductance