Improved Electrical and Thermal Aging Properties of DBSA-Doped PANI Using MWCNT and GO

Abstract

Electrical conductivity deterioration of polyaniline (PANI) at elevated temperatures has limited its applications for commercial usages. In this study we endeavored to improve the thermal aging resistance of PANI and its conductivity stability at elevated temperatures using a high molecular weight dopant, dodecylbenzenesulfonic acid (DBSA), along with the addition of carbon-based nanoparticles. DBSA-doped PANI (DBSA-PANI) and its nanocomposites with graphene oxide (PANI/GO) and multi-walled carbon nanotube (PANI/MWCNT) were prepared through in situ polymerization. The samples were aged at 90°C up to 1000 h and characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), and electrical conductivity measurements. It was observed that electrical conductivity deteriorates more rapidly in DBSA-PANI than in GO and MWCNT nanocomposites. The FTIR results confirmed a strong retention of DBSA groups in the nanocomposites after aging, but not for DBSA-PANI. This showed more stability of DBSA dopant in PANI/GO and PANI/CNT. The characteristic time (τ), as a criterion for thermal stability, was found to be 91, 172, and 295 h for DBSA-PANI, PANI/MWCNT, and PANI/GO, respectively. It was suggested that the retardation of the de-doping process is the major reason for the higher τ value and more electrical conductivity stability of PANI/GO. The obtained thermal stability for the electrical conductivity of DBSA doped PANI/GO nanocomposites was nearly 30 times higher than that of HCl-doped PANI.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Bhadra, D. Khastgir, N.K. Singha, and J.H. Lee, Prog. Polym. Sci. 34, 783 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Luo, R. Guo, T. Li, F. Li, Z. Liu, M. Zheng, B. Wang, Z. Yang, H. Luo, and Y. Wan, Chemsuschem 12, 1591 (2018).

    Article  Google Scholar 

  3. 3.

    M.K. Yazdi, H. Saeidi, P. Zarrintaj, M.R. Saeb, and M. Mozafari, In Fundamentals and Emerging Applications of Polyaniline, 1st ed. (San Diego: Elsevier, 2019), pp. 121–130.

    Google Scholar 

  4. 4.

    K.-H. Park, S.J. Kim, R. Gomes, and A. Bhaumik, Chem. Eng. J. 260, 393 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    M. Hosseinnezhad, K. Gharanjig, M.K. Yazdi, P. Zarrintaj, S. Moradian, M.R. Saeb, and F.J. Stadler, J. Alloys Compd. 828, 154329 (2020).

    CAS  Article  Google Scholar 

  6. 6.

    J. Chu, D. Lu, B. Wu, X. Wang, M. Gong, R. Zhang, and S. Xiong, Sol. Energy Mater. Sol. Cells 177, 70 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    A.I. Khadieva, V.V. Gorbachuk, G.A. Evtugyn, S.V. Belyakova, R.R. Latypov, S.V. Drobyshev, and I.I. Stoikov, Sci. Rep. 9, 1 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    S. Qiu, C. Chen, W. Zheng, W. Li, H. Zhao, and L. Wang, Synth. Met. 229, 39 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    A. Chiolerio, S. Bocchini, F. Scaravaggi, S. Porro, D. Perrone, D. Beretta, M. Caironi, and C.F. Pirri, Semicond. Sci. Technol. 30, 104001 (2015).

    Article  Google Scholar 

  10. 10.

    P. Zarrintaj, M.K. Yazdi, H. Vahabi, P.N. Moghadam, and M.R. Saeb, Prog. Org. Coat. 130, 144 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    J.L. Brédas and R. Silbey, In Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials. (Springer, Berlin 2012).

  12. 12.

    Z. Zhang, Z. Wei, and M. Wan, Macromol. 35, 5937 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    M.V. Kulkarni, A.K. Viswanath, R. Marimuthu, and T. Seth, Polym. Eng. Sci. 44, 1676 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    M.K. Yazdi, G.H. Motlagh, S.S. Garakani, and A. Boroomand, J. Polym. Res. 25, 265 (2018).

    Article  Google Scholar 

  15. 15.

    M. Khalid, M.A. Tumelero, I. Brandt, V.C. Zoldan, J.J. Acuña, and A.A. Pasa, Indian J. Eng. Mater. Sci. 2013, 1 (2013).

    Google Scholar 

  16. 16.

    L. Ren, G. Zhang, H. Li, D. Hu, and S. Dou, Int. J. Electrochem. Sci. 14, 238 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    M.G. Han, S.K. Cho, S.G. Oh, and S.S. Im, Synth. Met. 126, 53 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    P. Zarrintaj, M.K. Yazdi, M. Jouyandeh, and M.R. Saeb, In Fundamentals and Emerging Applications of Polyaniline, 1st ed. (San Diego: Elsevier, 2019), pp. 143–163.

    Google Scholar 

  19. 19.

    M.M. Nobrega, C.M. Izumi, and M.L. Temperini, Polym. Degrad. Stab. 113, 66 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    J. Prokeš and J. Stejskal, Polym. Degrad. Stab. 86, 187 (2004).

    Article  Google Scholar 

  21. 21.

    I. Šeděnková, M. Trchova, and J. Stejskal, Polym. Degrad. Stab. 93, 2147 (2008).

    Article  Google Scholar 

  22. 22.

    M. Trchová, I. Šeděnková, E. Tobolková, and J. Stejskal, Polym. Degrad. Stab. 86, 179 (2004).

    Article  Google Scholar 

  23. 23.

    T. Chen, C. Dong, X. Li, and J. Gao, Polym. Degrad. Stab. 94, 1788 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    S. Sakkopoulos, E. Vitoratos, E. Dalas, N. Kyriakopoulos, P. Malkaj, and T. Argyreas, J. Appl. Polym. Sci. 97, 117 (2005).

    CAS  Article  Google Scholar 

  25. 25.

    I. Šeděnková, J. ProkeŠ, M. Trchová, and J. Stejskal, Polym. Degrad. Stab. 93, 428 (2008).

    Article  Google Scholar 

  26. 26.

    M.O. Ansari and F. Mohammad, Compos. Part B-Eng. 43, 3541 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    X. Lu, H.Y. Ng, J. Xu, and C. He, Synth. Met. 128, 167 (2002).

    CAS  Article  Google Scholar 

  28. 28.

    J. Stejskal, M. Omastova, S. Fedorova, J. Prokeš, and M. Trchová, Polymer 44, 1353 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    M. Khodadadi Yazdi and G. Hashemi Motlagh, J Appl Polym Sci, vol. 134, 44635 (2017).

  30. 30.

    X. Cheng, V. Kumar, T. Yokozeki, T. Goto, T. Takahashi, J. Koyanagi, L. Wu, and R. Wang, Compos. Part A Appl. Sci. Manuf. 82, 100 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    R. Kumar, M.O. Ansari, and M. Barakat, Chem. Eng. J. 228, 748 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    N.A. Ogurtsov, Y.V. Noskov, V.N. Bliznyuk, V.G. Ilyin, J.-L. Wojkiewicz, E.A. Fedorenko, and A.A. Pud, J. Phys. Chem. C 120, 230 (2015).

    Article  Google Scholar 

  33. 33.

    W. Gao, In Graphene oxide, (Springer: 2015).

  34. 34.

    M.S. Khan and Z. Ali, Chin. J. Polym. Sci. 23, 29 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    G. Nikravan, G. Motlagh, A. Foroozani, and S. Motahari, Cell. Polym. 35, 329 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    V. Kumar, R. Mahajan, I. Kaur, and K.-H. Kim, ACS Appl Mater Inter 9, 16813 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    S. Bachhav and D. Patil, Am J Mater Sci 5, 90 (2015).

    Google Scholar 

  38. 38.

    T.-H. Le, Y. Kim, and H. Yoon, Polymers 9, 150 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ali Boroomand who was the first student in our APMP Lab to synthesize polyaniline and its CNT nanocomposite.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Hashemi Motlagh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khodadadi Yazdi, M., Hashemi Motlagh, G. Improved Electrical and Thermal Aging Properties of DBSA-Doped PANI Using MWCNT and GO. Journal of Elec Materi (2020). https://doi.org/10.1007/s11664-020-08256-x

Download citation

Keywords

  • polyaniline
  • graphene oxide
  • carbon nanotube
  • de-doping
  • stability
  • conductivity