Influence of the CdZnTe Substrate Thickness on the Response of HgCdTe Detectors Under Irradiation: Modeling of the Substrate Luminescence

Abstract

The most extensively used infrared (IR) detectors in astrophysics are based on mercury cadmium telluride (MCT) technology: the MCT light-sensitive layer is grown on a cadmium zinc telluride (CZT) substrate. When launched on a satellite, these detectors are subjected to ionizing radiation from cosmic rays or solar flares (mainly protons) which degrade the detector performance. Indeed, an elevation of the detector background was noted under irradiation, which is believed to be associated with the luminescence of the CZT substrate. Complete removal of the substrate eliminates the problem, but it is a challenging step in the fabrication process. A deeper understanding of the response of IR detectors under irradiation, when the substrate is fully removed, will enable the optimization of substrate design for high-performance space-based scientific imaging. Here, the first results of proton irradiation modeling in MCT detectors, including energy deposition in the CZT substrate, are presented. The estimation of image pollution relies on GEANT4 (GEometry ANd Tracking 4) Monte Carlo simulations as well as analytical and numerical calculations of carrier transport inside the detector structure. In particular, recombination processes in the CZT substrate are taken into account to model the luminescence effect induced by proton irradiation. According to this model, considering published material properties, the diffusion of the carriers generated inside the CZT substrate toward the MCT layer is the main source of pollution. As the substrate thickness increases, more pixels are impacted by a proton impact on the IR. Consequently, depending on the targeted application, either partial or complete removal may be chosen.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Rogalski, Prog. Quantum Electron. 27, 59 (2003). https://doi.org/10.1016/s0079-6727(02)00024-1.

    CAS  Article  Google Scholar 

  2. 2.

    K. Minoglou, N. Nelms, A. Ciapponi, H. Weber, S. Wittig, B. Leone, and P.E. Crouzet, Infrared Phys. Technol. 96, 351 (2019). https://doi.org/10.1016/j.infrared.2018.12.010.

    Article  Google Scholar 

  3. 3.

    O. Boulade, V. Moreau, P. Mulet, O. Gravrand, C. Cervera, J.-P. Zanatta, P. Castelein, F. Guellec, B. Fièque, P. Chorier, and J. Roumegoux, in High Energy, Optical, and Infrared Detectors for Astronomy VII, vol. 9915 (2016), p. 99150C. https://doi.org/10.1117/12.2231295.

  4. 4.

    B. Fièque, A. Lamoure, O. Gravrand, O. Boulade, S. Mouzali, G. Badano, S. Basa, F. Salvetti, and S. Aufranc, in High Energy, Optical, and Infrared Detectors for Astronomy VIII, vol. 10709 (2018), p. 107095. https://doi.org/10.1117/12.2311713.

  5. 5.

    O. Gravrand, J. Rothman, C. Cervera, N. Baier, C. Lobre, J.P. Zanatta, O. Boulade, V. Moreau, and B. Fieque, J. Electron. Mater. 45, 4532 (2016). https://doi.org/10.1007/s11664-016-4516-3.

    CAS  Article  Google Scholar 

  6. 6.

    S.D. Johnson, A. Waczynski, P.W. Marshall, E.J. Polidan, C.J. Marshall, R.A. Reed, R.A. Kimble, G. Delo, D. Schlossberg, A.M. Russell, T. Beck, Y. Wen, J. Yagelowich, R.J. Hill, E. Wassell, and E.S. Cheng, Focal Plane Arrays for Space Telescopes, vol. 5167 (2004), p. 243. https://doi.org/10.1117/12.508443.

  7. 7.

    A. Waczynski, P.W. Marshall, C.J. Marshall, R. Foltz, R.A. Kimble, S.D. Johnson, and R.J. Hill, Focal Plane Arrays for Space Telescopes II, vol. 5902 (2005), p. 59020P. https://doi.org/10.1117/12.617716.

  8. 8.

    M.L. Dorn, J.L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, J. Astron. Telesc. Instrum. Syst. 2, 036002 (2016). https://doi.org/10.1117/1.jatis.2.3.036002.

    Article  Google Scholar 

  9. 9.

    R. Smith, C. Bebek, M. Bonati, M.G. Brown, D. Cole, G. Rahmer, M. Schubnell, S. Seshadri, and G. Tarle, High Energy, Optical, and Infrared Detectors for Astronomy II, vol. 6276 (2006), p. 62760R. https://doi.org/10.1016/j.coastaleng.2011.06.009.

  10. 10.

    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weberm, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8.

    CAS  Article  Google Scholar 

  11. 11.

    F. Hecht, J. Numer. Math. 20, 251 (2012). https://doi.org/10.1515/jnum-2012-0013.

    Article  Google Scholar 

  12. 12.

    O. Gravrand, J.C. Desplanches, C. Delbègue, G. Mathieu, and J. Rothman, J. Electron. Mater. 35, 1159 (2006). https://doi.org/10.1007/s11664-006-0236-4.

    CAS  Article  Google Scholar 

  13. 13.

    E. Bertin, Astron. Astrophys. Suppl. Ser. 117, 393 (1996). https://doi.org/10.1051/aas:1996164.

    Article  Google Scholar 

  14. 14.

    W.H. Bragg and R. Kleeman, Lond. Edinb. Dublin Philos. Mag. J. Sci. 10, 318 (1905). https://doi.org/10.1080/14786440509463378.

    CAS  Article  Google Scholar 

  15. 15.

    M. Murat, A. Akkerman, and J. Barak, IEEE Trans. Nucl. Sci. 55, 3046 (2008). https://doi.org/10.1109/tns.2008.2007646.

    CAS  Article  Google Scholar 

  16. 16.

    M. Raine, M. Gaillardin, J.E. Sauvestre, O. Flament, A. Bournel, and V. Aubry-Fortuna, in Proceedings of European Conference on Radiation and Its Effects on Components and Systems, RADECS, vol. 57, No. 4(2009), p. 521. https://doi.org/10.1109/radecs.2009.5994707.

  17. 17.

    J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268, 1818 (2010). https://doi.org/10.1016/j.nimb.2010.02.091.

    CAS  Article  Google Scholar 

  18. 18.

    D.I. Thwaites, Radiat. Res. 95, 495 (1983). https://doi.org/10.2307/3576096.

    CAS  Article  Google Scholar 

  19. 19.

    C.A. Klein, J. Appl. Phys. 39, 2029 (1968). https://doi.org/10.1063/1.1656484.

    CAS  Article  Google Scholar 

  20. 20.

    G.R. Hopkinson, C.J. Dale, and P.W. Marshall, IEEE Trans. Nucl. Sci. 43, 614 (1996). https://doi.org/10.1109/23.490905.

    CAS  Article  Google Scholar 

  21. 21.

    J.C. Pickel, R.A. Reed, R. Ladbury, B. Rauscher, P.W. Marshall, T.M. Jordan, B. Fodness, and G. Gee, IEEE Trans. Nucl. Sci. 49I, 2822 (2002). https://doi.org/10.1109/tns.2002.805382.

    Article  Google Scholar 

  22. 22.

    V.Y. Degoda and A.O. Sofienko, Proc. Int. Work Oxide Mater. Electron. Eng. 117, 155 (2010).

    CAS  Google Scholar 

  23. 23.

    J.W. Mayer, J. Appl. Phys. 38, 296 (1967). https://doi.org/10.1063/1.1708970.

    CAS  Article  Google Scholar 

  24. 24.

    S.L. Price, in 1984 International Electronic Devices Meeting (1984), p. 560. https://doi.org/10.1109/iedm.1984.190781.

  25. 25.

    G.L. Hansen, J.L. Schmit, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982). https://doi.org/10.1063/1.330018.

    CAS  Article  Google Scholar 

  26. 26.

    G. Rolland, L.P. Da Silva, C. Inguimbert, J.P. David, R. Ecoffet, and M. Auvergne, IEEE Trans. Nucl. Sci. 55, 2070 (2008). https://doi.org/10.1109/tns.2008.920427.

    CAS  Article  Google Scholar 

  27. 27.

    L.D. Edmonds, IEEE Trans. Nucl. Sci. 38, 834 (1991). https://doi.org/10.1109/23.289397.

    Article  Google Scholar 

  28. 28.

    D. Kuciauskas, A. Kanevce, P. Dippo, S. Seyedmohammadi, and R. Malik, IEEE J. Photovolt. 5, 366 (2015). https://doi.org/10.1109/jphotov.2014.2359738.

    Article  Google Scholar 

  29. 29.

    G. Rolland, IEEE Trans. Nucl. Sci. 55, 2028 (2008). https://doi.org/10.1109/tns.2008.2000768.

    Article  Google Scholar 

  30. 30.

    S. Kirkpatrick, IEEE Trans. Electron Devices 26, 1742 (1979). https://doi.org/10.1109/t-ed.1979.19680.

    Article  Google Scholar 

  31. 31.

    T. Kuriyama, T. Kamiya, and H. Yanai, Jpn. J. Appl. Phys. 16, 465 (1977). https://doi.org/10.1143/jjap.16.465.

    CAS  Article  Google Scholar 

  32. 32.

    C. Hill, Learning Scientific Programming with Python (Cambridge: Cambridge University Press, 2016).

    Google Scholar 

  33. 33.

    T.E. Oliphant, Comput. Sci. Eng. 9, 10 (2007). https://doi.org/10.1109/mcse.2007.58.

    CAS  Article  Google Scholar 

  34. 34.

    P. Capper, Properties of Narrow Gap Cadmium-Based Compounds (London: The Institution of Engineering and Technology, 1995).

    Google Scholar 

  35. 35.

    S. Adachi and T. Kimura, Jpn. J. Appl. Phys. 32, 3496 (1993). https://doi.org/10.1143/jjap.32.3496.

    CAS  Article  Google Scholar 

  36. 36.

    R. Triboulet and P. Siffert, CdTe and Related Compounds; Physics, Defects, Hetero- and Nano-structures, Crystal Growth, Surfaces and Applications (Amsterdam: Elsevier, 2010).

    Google Scholar 

  37. 37.

    R. Grill, J. Franc, H. Elhadidy, E. Belas, Š. Uxa, M. Bugár, P. Moravec, and P. Höschl, IEEE Trans. Nucl. Sci. 59, 2383 (2012). https://doi.org/10.1109/tns.2012.2210245.

    CAS  Article  Google Scholar 

  38. 38.

    C.H. Swartz, M. Edirisooriya, E.G. Leblanc, O.C. Noriega, P.A.R.D. Jayathilaka, O.S. Ogedengbe, B.L. Hancock, M. Holtz, T.H. Myers, and K.N. Zaunbrecher, Appl. Phys. Lett. 105, 22 (2014). https://doi.org/10.1063/1.4902926.

    CAS  Article  Google Scholar 

  39. 39.

    A.P. Kirk, M.J. Dinezza, S. Liu, X.H. Zhao, and Y.H. Zhang, in Conference Record of the IEEE Photovoltaic Specialists Conference (2013), p. 2515. https://doi.org/10.1109/pvsc.2013.6744987.

  40. 40.

    X.-H. Zhao, M.J. DiNezza, S. Liu, S. Lin, Y. Zhao, and Y.-H. Zhang, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 32, 040601 (2014). https://doi.org/10.1116/1.4878317.

    CAS  Article  Google Scholar 

  41. 41.

    G. Giardino, S. Birkmann, M. Robberto, P. Ferruit, B.J. Rauscher, M. Sirianni, C.A. de Oliveira, T. Boeker, N. Luetzgendorf, M. Te Plate, E. Puga, and T. Rawle, Publ. Astron. Soc. Pac. 131, 094503 (2019). https://doi.org/10.1088/1538-3873/ab2fd6.

    Article  Google Scholar 

  42. 42.

    N. Zambelli, L. Marchini, G. Benassi, D. Calestani, and A. Zappettini, IEEE Trans. Nucl. Sci. 59, 1526 (2012). https://doi.org/10.1109/tns.2012.2199332.

    CAS  Article  Google Scholar 

  43. 43.

    J. Lee, N.C. Giles, D. Rajavel, and C.J. Summers, Phys. Rev. B 49, 1668 (1994). https://doi.org/10.1103/physrevb.49.1668.

    CAS  Article  Google Scholar 

  44. 44.

    J.D. Jackson, Classical Electrodynamics, 3rd ed. (New York: Wiley, 1998).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thibault Pichon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pichon, T., Mouzali, S., Boulade, O. et al. Influence of the CdZnTe Substrate Thickness on the Response of HgCdTe Detectors Under Irradiation: Modeling of the Substrate Luminescence. Journal of Elec Materi (2020). https://doi.org/10.1007/s11664-020-08237-0

Download citation

Keywords

  • IR detector
  • proton irradiation
  • luminescence
  • CdZnTe
  • HgCdTe
  • modeling