Skip to main content
Log in

Effect of Silver Nanoparticles on Properties of Cobalt Ferrites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ferrite nanomaterials in the form of CoAgxFe2−xO4 (x = 0.0, 0.03, 0.07, 0.1, and 0.2) have been prepared by the citrate autocombustion method. Structural analysis was carried out by x-ray diffraction. Fourier-transform infrared spectroscopy confirmed the formation of a spinel crystal structure. High-resolution transmission electron microscopy revealed the formation of particles with mixed morphologies. The average particle size ranged from 22 nm to 31 nm. Vibrating-sample magnetometry revealed that the saturation magnetization Ms and coercivity Hc were affected by the grain size variation. The electrical properties of the samples were investigated over the frequency range from 102 Hz to 105 Hz. Electric modulus analysis showed that the conduction was due to short-range mobility of charge carriers. The variation of the dielectric loss with frequency at different temperatures indicated two types of conduction mechanism. All these results suggest that the synthesized materials can be recommended for fabrication of exchange spring magnets and electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Amiri, M. Salavati-Niasari, and A. Akbari, J. Adv. Colloid Interface Sci. 265, 29 (2019).

    Article  CAS  Google Scholar 

  2. L.M. Thorat, J.Y. Patil, D.Y. Nadargi, R.C. Kambale, and S.S. Suryavanshi, J. Inorg. Chem. Commun. 99, 20 (2019).

    Article  CAS  Google Scholar 

  3. M.N. Akhtar, A.A. Khan, M.N. Akhtar, M. Ahmed, and M.A. Khan, J. Physica B 561, 121 (2019).

    Article  CAS  Google Scholar 

  4. M. Kaiser, J. Alloys Compd. 719, 446 (2017).

    Article  CAS  Google Scholar 

  5. A. Hashhash and M. Kaiser, J. Electron. Mater. 45, 462 (2016).

    Article  Google Scholar 

  6. L. Feng, C. Zhang, G. Gao, and D. Cui, Nanoscale Res. Lett. 7, 276 (2012).

    Article  Google Scholar 

  7. B.K. Ghosh, D. Moitra, M. Chandel, H. Lulla, and N.N. Ghosh, J. Mater. Res. Bull. 94, 361 (2017).

    Article  CAS  Google Scholar 

  8. V. Babayan, N.E. Kazantseva, I. Sapurina, R. Moučka, J. Stejskal, and P. Sàha, J. Magn. Magn. Mater. 333, 30 (2013).

    Article  CAS  Google Scholar 

  9. A.L. Stepanov, J.R. Kreen, H. Ditlabcher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F.R. Aussenegg, Opt. Lett. 30, 1524 (2005).

    Article  Google Scholar 

  10. N. Okasha, J. Mater. Sci. 43, 4192 (2008).

    Article  CAS  Google Scholar 

  11. B. Aslibeiki, J. Curr. Appl. Phys. 14, 1659 (2014).

    Article  Google Scholar 

  12. R. Shukla, R.S. Ningthoujam, S.S. Umare, S.J. Sharma, S. Kurian, R.K. Vatsa, A.K. Tyagi, and N.S. Gajbhi, J. Hyperfine Interact. 184, 217 (2008).

    Article  CAS  Google Scholar 

  13. M.A. Ahmed, S.I. El-Dek, I.M. El-Kashef, and N. Helmy, Solid State Sci. 13, 1176 (2011).

    Article  CAS  Google Scholar 

  14. M.A. Ahmed, S.F. Mansour, and S.I. El-Dek, Solid State Ion. 181, 1149 (2010).

    Article  CAS  Google Scholar 

  15. J.P. Jakubovics, Magnetism and Magnetic Materials (Cambridge: Cambridge University Press, 1994).

    Google Scholar 

  16. A.K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu, and S.A. Majetich, IEEE Trans. Magn. 36, 3029 (2000).

    Article  CAS  Google Scholar 

  17. B.D. Cullity, Elements of X-ray Diffraction, Vol. 99 (Boston: Addison Wesley, 1967), p. 96.

    Google Scholar 

  18. N.M. Deraz, J. Anal. Appl. Pyrol. 88, 103 (2010).

    Article  CAS  Google Scholar 

  19. G.N. Pirogova, N.M. Panich, R.L. Korosteleva, Y.V. Voronin, and N.N. Popova, Russ. Chem. Bull. 49, 1536 (2000).

    Article  CAS  Google Scholar 

  20. L. Neel, Ann. Phys. 3, 137 (1948).

    Article  CAS  Google Scholar 

  21. K. Sharma, S.S. Meena, S. Saxena, S.M. Yusuf, A. Srinivasan, and G.P. Kothiyal, Mater. Chem. Phys. 133, 144 (2012).

    Article  CAS  Google Scholar 

  22. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, and M.D. Baró, J. Phys. Rep. 422, 65 (2005).

    Article  Google Scholar 

  23. S.E. Shirath, R.H. Kadam, A.S. Gaikwad, A. Ghasemi, and A. Morisako, J. Magn. Magn. Mater. 323, 3104 (2011).

    Article  Google Scholar 

  24. E.C. Stoner and E.P. Wohlfarth, Philos. Trans. R. Soc. A 240, 599 (1948).

    Google Scholar 

  25. M.K. Satheeshkumar, E.R. Kumar, Ch Srinivas, N. Suriyanarayanan, M. Deepty, C.L. Prajapat, T.V.C. Rao, and D.L. Sastry, J. Magn. Magn. Mater. 469, 691 (2019).

    Article  CAS  Google Scholar 

  26. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, M.N. Ashiq, and S. Naseem, J. Alloys Compd. 550, 564 (2013).

    Article  CAS  Google Scholar 

  27. S.G. Kakade, Y.R. Ma, R.S. Devan, Y.D. Kolekar, and C.V. Ramana, J. Phys. Chem. C 120, 5682 (2016).

    Article  CAS  Google Scholar 

  28. M. Kaiser, Phys. B 407, 606 (2012).

    Article  CAS  Google Scholar 

  29. L. I. Rabkin and Z. I. Novikova, Ferrites, Izvestiia Akademii Nauk. Seriia Biologicheskaia 55R, 1985 (1957).

  30. M.A. Ahmed, S.T. Bishay, and G. Abdelatif, J. Phys. Chem. Solids 62, 1039 (2001).

    Article  CAS  Google Scholar 

  31. R.A. Mondal, B.S. Murty, and V.R.K. Murthy, J. Curr. Appl. Phys. 14, 1727 (2014).

    Article  Google Scholar 

  32. K. Iwauchi, Jpn. J. Appl. Phys. 10, 1520 (1971).

    Article  CAS  Google Scholar 

  33. P.B. Macedo, C.T. Moynihan, and R. Bose, J. Phys. Chem. Glasses 13, 171 (1972).

    CAS  Google Scholar 

  34. H.M. El Ghanem, H. Attar, H.S. Ahmad, and S. Abduljawad, Int. Polym. Mater. 55, 663 (2006).

    Article  Google Scholar 

  35. S.T. Assar, H.F. Abosheiasha, and A.R. El-Sayed, J. Magn. Magn. Mater. 421, 355 (2017).

    Article  CAS  Google Scholar 

  36. G. Govindaraj, N. Baskaran, K. Shahi, and P. Monoravi, J. Solid State Ion. 76, 47 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kaiser.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, M. Effect of Silver Nanoparticles on Properties of Cobalt Ferrites. J. Electron. Mater. 49, 5053–5063 (2020). https://doi.org/10.1007/s11664-020-08234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08234-3

Keywords

Navigation