Effect of Silver Nanoparticles on Properties of Cobalt Ferrites


Ferrite nanomaterials in the form of CoAgxFe2−xO4 (x = 0.0, 0.03, 0.07, 0.1, and 0.2) have been prepared by the citrate autocombustion method. Structural analysis was carried out by x-ray diffraction. Fourier-transform infrared spectroscopy confirmed the formation of a spinel crystal structure. High-resolution transmission electron microscopy revealed the formation of particles with mixed morphologies. The average particle size ranged from 22 nm to 31 nm. Vibrating-sample magnetometry revealed that the saturation magnetization Ms and coercivity Hc were affected by the grain size variation. The electrical properties of the samples were investigated over the frequency range from 102 Hz to 105 Hz. Electric modulus analysis showed that the conduction was due to short-range mobility of charge carriers. The variation of the dielectric loss with frequency at different temperatures indicated two types of conduction mechanism. All these results suggest that the synthesized materials can be recommended for fabrication of exchange spring magnets and electrode materials.

This is a preview of subscription content, log in to check access.


  1. 1.

    M. Amiri, M. Salavati-Niasari, and A. Akbari, J. Adv. Colloid Interface Sci. 265, 29 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    L.M. Thorat, J.Y. Patil, D.Y. Nadargi, R.C. Kambale, and S.S. Suryavanshi, J. Inorg. Chem. Commun. 99, 20 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    M.N. Akhtar, A.A. Khan, M.N. Akhtar, M. Ahmed, and M.A. Khan, J. Physica B 561, 121 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    M. Kaiser, J. Alloys Compd. 719, 446 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    A. Hashhash and M. Kaiser, J. Electron. Mater. 45, 462 (2016).

    Article  Google Scholar 

  6. 6.

    L. Feng, C. Zhang, G. Gao, and D. Cui, Nanoscale Res. Lett. 7, 276 (2012).

    Article  Google Scholar 

  7. 7.

    B.K. Ghosh, D. Moitra, M. Chandel, H. Lulla, and N.N. Ghosh, J. Mater. Res. Bull. 94, 361 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    V. Babayan, N.E. Kazantseva, I. Sapurina, R. Moučka, J. Stejskal, and P. Sàha, J. Magn. Magn. Mater. 333, 30 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    A.L. Stepanov, J.R. Kreen, H. Ditlabcher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F.R. Aussenegg, Opt. Lett. 30, 1524 (2005).

    Article  Google Scholar 

  10. 10.

    N. Okasha, J. Mater. Sci. 43, 4192 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    B. Aslibeiki, J. Curr. Appl. Phys. 14, 1659 (2014).

    Article  Google Scholar 

  12. 12.

    R. Shukla, R.S. Ningthoujam, S.S. Umare, S.J. Sharma, S. Kurian, R.K. Vatsa, A.K. Tyagi, and N.S. Gajbhi, J. Hyperfine Interact. 184, 217 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    M.A. Ahmed, S.I. El-Dek, I.M. El-Kashef, and N. Helmy, Solid State Sci. 13, 1176 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    M.A. Ahmed, S.F. Mansour, and S.I. El-Dek, Solid State Ion. 181, 1149 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    J.P. Jakubovics, Magnetism and Magnetic Materials (Cambridge: Cambridge University Press, 1994).

    Google Scholar 

  16. 16.

    A.K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu, and S.A. Majetich, IEEE Trans. Magn. 36, 3029 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    B.D. Cullity, Elements of X-ray Diffraction, Vol. 99 (Boston: Addison Wesley, 1967), p. 96.

    Google Scholar 

  18. 18.

    N.M. Deraz, J. Anal. Appl. Pyrol. 88, 103 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    G.N. Pirogova, N.M. Panich, R.L. Korosteleva, Y.V. Voronin, and N.N. Popova, Russ. Chem. Bull. 49, 1536 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    L. Neel, Ann. Phys. 3, 137 (1948).

    CAS  Article  Google Scholar 

  21. 21.

    K. Sharma, S.S. Meena, S. Saxena, S.M. Yusuf, A. Srinivasan, and G.P. Kothiyal, Mater. Chem. Phys. 133, 144 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, and M.D. Baró, J. Phys. Rep. 422, 65 (2005).

    Article  Google Scholar 

  23. 23.

    S.E. Shirath, R.H. Kadam, A.S. Gaikwad, A. Ghasemi, and A. Morisako, J. Magn. Magn. Mater. 323, 3104 (2011).

    Article  Google Scholar 

  24. 24.

    E.C. Stoner and E.P. Wohlfarth, Philos. Trans. R. Soc. A 240, 599 (1948).

    Google Scholar 

  25. 25.

    M.K. Satheeshkumar, E.R. Kumar, Ch Srinivas, N. Suriyanarayanan, M. Deepty, C.L. Prajapat, T.V.C. Rao, and D.L. Sastry, J. Magn. Magn. Mater. 469, 691 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, M.N. Ashiq, and S. Naseem, J. Alloys Compd. 550, 564 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    S.G. Kakade, Y.R. Ma, R.S. Devan, Y.D. Kolekar, and C.V. Ramana, J. Phys. Chem. C 120, 5682 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    M. Kaiser, Phys. B 407, 606 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    L. I. Rabkin and Z. I. Novikova, Ferrites, Izvestiia Akademii Nauk. Seriia Biologicheskaia 55R, 1985 (1957).

  30. 30.

    M.A. Ahmed, S.T. Bishay, and G. Abdelatif, J. Phys. Chem. Solids 62, 1039 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    R.A. Mondal, B.S. Murty, and V.R.K. Murthy, J. Curr. Appl. Phys. 14, 1727 (2014).

    Article  Google Scholar 

  32. 32.

    K. Iwauchi, Jpn. J. Appl. Phys. 10, 1520 (1971).

    CAS  Article  Google Scholar 

  33. 33.

    P.B. Macedo, C.T. Moynihan, and R. Bose, J. Phys. Chem. Glasses 13, 171 (1972).

    CAS  Google Scholar 

  34. 34.

    H.M. El Ghanem, H. Attar, H.S. Ahmad, and S. Abduljawad, Int. Polym. Mater. 55, 663 (2006).

    Article  Google Scholar 

  35. 35.

    S.T. Assar, H.F. Abosheiasha, and A.R. El-Sayed, J. Magn. Magn. Mater. 421, 355 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    G. Govindaraj, N. Baskaran, K. Shahi, and P. Monoravi, J. Solid State Ion. 76, 47 (1995).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Kaiser.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaiser, M. Effect of Silver Nanoparticles on Properties of Cobalt Ferrites. Journal of Elec Materi 49, 5053–5063 (2020). https://doi.org/10.1007/s11664-020-08234-3

Download citation


  • Nanoferrites
  • magnetic properties
  • AC conductivity
  • FTIR
  • x-ray diffraction