Effects of Solution Precursor on Structural, Morphological, and Photoelectrochemical Properties of ZnO Layers Deposited by Recurrent Cyclic Voltammetry

Abstract

The effects of the choice of the starting solution on the crystalline growth and structural and photoelectrochemical properties of zinc oxide films deposited on conductive (fluorine-doped tin oxide) glass substrate by cyclic voltammetry at 70°C have been studied. The morphology of the deposits was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The photoelectrochemical response in K2SO4 solution was followed by voltammetry and chronoamperometry. X-ray diffraction analysis revealed hexagonal wurtzite crystalline structure for all the films, with randomly oriented crystallites for the ZnO film prepared from zinc chloride or from an equimolar mixture of zinc chloride and zinc nitrate. Meanwhile, the films developed from zinc nitrate or from zinc acetate solution presented preferential (002) orientation. SEM revealed nanometric grains with hexagonal shape for all the films. The effects of the choice of the precursor on the symmetry, kurtosis, and roughness of the different films was evidenced by AFM, revealing that the roughness varied from 40 nm to 87 nm depending on the starting solution. The photoelectrochemical performance of the films was evaluated by chronoamperometry, revealing a strong anodic photocurrent and confirming their n-type semiconducting nature.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D.C. Look, Semicond. Sci. Technol. 20, S55 (2005).

    CAS  Google Scholar 

  2. 2.

    T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, and S.K.S. Parashar, J. Mater. Sci.: Mater. Electron. 28, 13587 (2017).

    CAS  Google Scholar 

  3. 3.

    N. Kouklin, M. Omari, and A. Gupta, Nanowires Sci. Technol. 367 (2010).

  4. 4.

    Z. Fan and J.G. Lu, J. Nanosci. Nanotechnol. 5, 1561 (2005).

    CAS  Google Scholar 

  5. 5.

    A.L. Dawar and J.C. Joshi, J. Mater. Sci. 19, 1 (1984).

  6. 6.

    L. Atourki, K. Bouabid, E. Ihalane, L. Alahyane, H. Kirou, E. El Hamri, A. Ihlal, A. Elfanaoui, and L. Laanab, Energy Procedia 50, 376 (2014).

    CAS  Google Scholar 

  7. 7.

    C.-T. Lee, Materials (Basel). 3, 2218 (2010).

    CAS  Google Scholar 

  8. 8.

    B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, R. Kumar, H.K. Choudhary, V.B. Khopkar, A.V. Anupama, and B. Sahoo, Mater. Chem. Phys. 221, 419 (2019).

    CAS  Google Scholar 

  9. 9.

    C. Karunakaran, P. Vinayagamoorthy, and J. Jayabharathi, Superlattices Microstruct. 64, 569 (2013).

    CAS  Google Scholar 

  10. 10.

    W. Li, Z. Ge, Z. Liu, J. Yang, J. Qiu, and Z. Jin, Kuei Suan Jen Hsueh Pao, J. Chin. Ceram. Soc. 33, 693 (2005).

  11. 11.

    T.W. Kim, K.D. Kwack, H.K. Kim, Y.S. Yoon, J.H. Bahang, and H.L. Park, Solid State Commun. 127, 635 (2003).

    CAS  Google Scholar 

  12. 12.

    M.A. Martínez, J. Herrero, and M.T.T. Gutiérrez, Sol. Energy Mater. Sol. Cells 45, 75 (1997).

    Google Scholar 

  13. 13.

    M. Izaki and J. Katayama, J. Electrochem. Soc. 147, 210 (2000).

    CAS  Google Scholar 

  14. 14.

    X.W. Sun, R.F. Xiao, and H.S. Kwok, J. Appl. Phys. 84, 5776 (1998).

    CAS  Google Scholar 

  15. 15.

    J. Bruncko, A. Vincze, M. Netrvalová, P. Šutta, M. Michalka, and F. Uherek, Vacuum 86, 684 (2012).

    CAS  Google Scholar 

  16. 16.

    M. Öztaş, M. Bedir, R. Kayali, and F. Aksoy, Mater. Sci. Eng., B 131, 94 (2006).

    Google Scholar 

  17. 17.

    Z. Sofiani, B. Derkowska, P. Dalasiński, M. Wojdyła, S. Dabos-Seignon, M.A. Lamrani, L. Dghoughi, W. Bała, M. Addou, and B. Sahraoui, Opt. Commun. 267, 433 (2006).

    CAS  Google Scholar 

  18. 18.

    T. Hirate, S. Sasaki, W. Li, H. Miyashita, T. Kimpara, and T. Satoh, Thin Solid Films 487, 35 (2005).

    CAS  Google Scholar 

  19. 19.

    L.N. Mahour, H.K. Choudhary, R. Kumar, A.V. Anupama, and B. Sahoo, Ceram. Int. 45, 24625 (2019).

    CAS  Google Scholar 

  20. 20.

    S. Choudhury, S. Sain, M.K. Mandal, S.K. Pradhan, and A.K. Meikap, Phys. E Low-Dimensional Syst. Nanostructures 81, 122 (2016).

    CAS  Google Scholar 

  21. 21.

    K. Rajeshwar, Encyclopedia of Electrochemistry (Berlin: Wiley, 2007), pp. 1–53.

    Google Scholar 

  22. 22.

    S.J. Kim and J. Choi, Electrochem. Commun. 10, 175 (2008).

    CAS  Google Scholar 

  23. 23.

    X. Lu, R. Zhu, and Y. He, Surf. Coat. Technol. 79, 19 (1996).

  24. 24.

    M. Aliofkhazraei and A.S.H. Makhlouf, Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques (Cham: Springer, 2016).

    Google Scholar 

  25. 25.

    T. Pauporté and D. Lincot, Electrochim. Acta 45, 3345 (2000).

    Google Scholar 

  26. 26.

    H. Lu, M. Zhang, and M. Guo, Appl. Surf. Sci. 317, 672 (2014).

    CAS  Google Scholar 

  27. 27.

    A. Henni, A. Merrouche, L. Telli, A. Azizi, and R. Nechache, Mater. Sci. Semicond. Process. 31, 380 (2015).

    CAS  Google Scholar 

  28. 28.

    K.L. Foo, M. Kashif, U. Hashim, and W.W. Liu, Ceram. Int. 40, 753 (2014).

    CAS  Google Scholar 

  29. 29.

    A. Goux, T. Pauporté, J. Chivot, and D. Lincot, Electrochim. Acta 50, 2239 (2005).

    CAS  Google Scholar 

  30. 30.

    B. Seipel, A. Nadarajah, B. Wutzke, and R. Könenkamp, Mater. Lett. 63, 736 (2009).

    CAS  Google Scholar 

  31. 31.

    N. Ait Ahmed, H. Hammache, L. Makhloufi, M. Eyraud, S. Sam, A. Keffous, and N. Gabouze, Vacuum 120, 100 (2015).

    CAS  Google Scholar 

  32. 32.

    O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L.K. Ono, B. Roldan Cuenya, and H. Heinrich, Appl. Surf. Sci. 256, 1895 (2010).

    CAS  Google Scholar 

  33. 33.

    T. Pauporté, E. Jouanno, F. Pellé, B. Viana, and P. Aschehoug, J. Phys. Chem. C 113, 10422 (2009).

    Google Scholar 

  34. 34.

    M. Skompska and K. Zarȩbska, Electrochim. Acta 127, 467 (2014).

    CAS  Google Scholar 

  35. 35.

    T. Pauporté and D. Lincot, J. Electroanal. Chem. 517, 54 (2001).

    Google Scholar 

  36. 36.

    K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, Angew. Chemie Int. Ed. 44, 2737 (2005).

    CAS  Google Scholar 

  37. 37.

    M. Izaki and T. Omi, J. Electrochem. Soc. 143, L53 (1996).

    CAS  Google Scholar 

  38. 38.

    H. Chettah and D. Abdi, Thin Solid Films 537, 119 (2013).

    CAS  Google Scholar 

  39. 39.

    R.E. Marotti, D.N. Guerra, C. Bello, G. Machado, and E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 82, 85 (2004).

    CAS  Google Scholar 

  40. 40.

    O. Baka, A. Azizi, S. Velumani, G. Schmerber, and A. Dinia, J. Mater. Sci.: Mater. Electron. 25, 1761 (2014).

    CAS  Google Scholar 

  41. 41.

    E. Bacaksiz, M. Parlak, M. Tomakin, A. Özçelik, M. Karakiz, M. Altunbaş, M. Karakız, and M. Altunbaş, J. Alloys Compd. 466, 447 (2008).

    CAS  Google Scholar 

  42. 42.

    L. Xu, Y. Guo, Q. Liao, J. Zhang, and D. Xu, J. Phys. Chem. B 109, 13519 (2005).

    CAS  Google Scholar 

  43. 43.

    R. Schlapak, D. Armitage, N. Saucedo-Zeni, G. Latini, H.J. Gruber, P. Mesquida, Y. Samotskaya, M. Hohage, F. Cacialli, and S. Howorka, Langmuir 23, 8916 (2007).

    CAS  Google Scholar 

  44. 44.

    A. Henni, A. Merrouche, L. Telli, A. Karar, F.I. Ezema, and H. Haffar, J. Solid State Electrochem. 20, 2135 (2016).

    CAS  Google Scholar 

  45. 45.

    A. Henni, A. Merrouche, L. Telli, and A. Karar, J. Electroanal. Chem. 763, 149 (2016).

    CAS  Google Scholar 

  46. 46.

    R. Viswanatha, S. Sapra, B. Satpati, P.V. Satyam, B.N. Dev, and D.D. Sarma, J. Mater. Chem. 14, 661 (2004).

    CAS  Google Scholar 

  47. 47.

    B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 2nd ed. (Reading: Addison-Wesley, 2001).

    Google Scholar 

  48. 48.

    D. Raoufi and T. Raoufi, Appl. Surf. Sci. 255, 5812 (2009).

    CAS  Google Scholar 

  49. 49.

    S. Benzitouni, M. Zaabat, J. Ebothe, B. Boudine, and R. Coste, Chin. J. Phys. 55, 2458 (2017).

    CAS  Google Scholar 

  50. 50.

    A.H. Ismail, A.H. Abdullah, and Y. Sulaiman, Superlattices Microstruct. 103, 171 (2017).

    CAS  Google Scholar 

  51. 51.

    B. Abderrahmane, D. Abdi, and M. Aicha, Mater. Sci. Semicond. Process. 27, 877 (2014).

    CAS  Google Scholar 

  52. 52.

    D.P. Doane and L.E. Seward, J. Stat. Educ. 19, 1 (2011).

    Google Scholar 

  53. 53.

    P.H. Westfall, Am. Stat. 68, 191 (2014).

    Google Scholar 

  54. 54.

    B.S. Wang, R.Y. Li, Z.Y. Zhang, Xing-Wang, X.L. Wu, G.A. Cheng, and R.T. Zheng, Catal. Today 321, 100 (2019).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Djamila Abdi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahal, F., Abdi, D. Effects of Solution Precursor on Structural, Morphological, and Photoelectrochemical Properties of ZnO Layers Deposited by Recurrent Cyclic Voltammetry. Journal of Elec Materi 49, 5037–5046 (2020). https://doi.org/10.1007/s11664-020-08166-y

Download citation

Keywords

  • ZnO
  • precursor solution
  • electrodeposition
  • voltammetry
  • photoactivity