Skip to main content
Log in

InGaAs/GaAsSb Type-II Superlattices for Short-Wavelength Infrared Detection

  • U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Type-II superlattices based on In0.53Ga0.47As/GaAs0.51Sb0.49 (5 nm/5 nm) lattice-matched to InP substrates are investigated for short-wavelength infrared detection. Eight band k.p simulations were utilized to extract information on the electronic band structure, which were in turn used to calculate the optical absorption spectrum of the superlattice. The effective bandgap is calculated to be 0.494 eV, corresponding to a cutoff wavelength of λc = 2.51 μm and optical absorption coefficient of approximately 2000 cm−1 at 2 μm. Quantum efficiency was calculated for a standard InGaAs/T2SL/InGaAs p-i-n device structure, where quantum efficiency exceeding 50% at 2 μm may be achieved. Dark current was calculated considering Auger, radiative, and Shockley–Read–Hall generation-recombination, where Shockley–Read–Hall recombination-generation was found to be the limiting mechanism for a trap density greater than 5 × 1014 cm−3, and radiatively limited performance is predicted for a lower trap density. The estimated dark current density is expected to be comparable to existing HgCdTe technology, while outperforming extended-range InGaAs by more than an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.M. Ciesla, B.N. Murdin, C.R. Pidgeon, R.A. Stradling, C.C. Phillips, M. Livingstone, I. Galbraith, D.A. Jaroszynski, C.J.G.M. Langerak, P.J.P. Tang, and M.J. Pullin, J. Appl. Phys. 80, 2994 (1996).

    Article  Google Scholar 

  2. A. Rogalski, Infrared Phys. Technol. 43, 187 (2002).

    Article  Google Scholar 

  3. J. Rothman, K. Foubert, G. Lasfargues, C. Largeron, I. Zayer, Z. Sodnik, M. Mosberger, and J. Widmer, in Emerging Technologies in Security and Defence II; and Quantum-Physics-based Information Security III (International Society for Optics and Photonics, 2014), p. 92540P.

  4. C.L. Tan and H. Mohseni, Nanophotonics 7, 169 (2018).

    Article  Google Scholar 

  5. L. Zhou, Y.G. Zhang, X.Y. Chen, Y. Gu, H.S.B.Y. Li, Y.Y. Cao, and S.P. Xi, J. Phys. Appl. Phys. 47, 085107 (2014).

    Article  Google Scholar 

  6. Y. Arslan, F. Oguz, and C. Besikci, Infrared Phys. Technol. 70, 134 (2015).

    Article  Google Scholar 

  7. A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).

    Article  Google Scholar 

  8. A. Rogalski, Infrared Phys. Technol. 54, 136 (2011).

    Article  Google Scholar 

  9. R. Breiter, M. Benecke, D. Eich, H. Figgemeier, A. Weber, J. Wendler, and A. Sieck, in Infrared Technology and Applications XLII (International Society for Optics and Photonics, 2016), p. 981908.

  10. W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, J. Electron. Mater. 37, 1406 (2008).

    Article  Google Scholar 

  11. W.E. Tennant, J. Electron. Mater. 39, 1030 (2010).

    Article  Google Scholar 

  12. Y. Uliel, D. Cohen-Elias, N. Sicron, I. Grimberg, N. Snapi, Y. Paltiel, and M. Katz, Infrared Phys. Technol. 84, 63 (2017).

    Article  Google Scholar 

  13. N. Cohen and O. Aphek, Infrared Technol Appl XLI 9451, 945106 (2015).

    Article  Google Scholar 

  14. H. Inada, K. Machinaga, S. Balasekaran, K. Miura, T. Kawahara, M. Migita, K. Akita, and Y. Iguchi, in Infrared Technology and Applications XLII (International Society for Optics and Photonics, 2016), p. 98190C.

  15. C. Jin, J. Chen, Q. Xu, C. Yu, and L. He, Opt. Eng. 56, 057102 (2017).

    Article  Google Scholar 

  16. B. Chen, W. Jiang, J. Yuan, A.L. Holmes, and B.M. Onat, IEEE J. Quantum Electron. 47, 1244 (2011).

    Article  Google Scholar 

  17. L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

    Article  Google Scholar 

  18. B. Chen, W. Sun, J.C. Campbell, and A.L. Holmes, in IEEE Photonic Society 24th Annual Meeting (2011), pp. 35–36.

  19. G.A. Umana-Membreno, B. Klein, H. Kala, J. Antoszewski, N. Gautam, M.N. Kutty, E. Plis, S. Krishna, and L. Faraone, Appl. Phys. Lett. 101, 253515 (2012).

    Article  Google Scholar 

  20. D. Benyahia, Ł. Kubiszyn, K. Michalczewski, J. Boguski, A. Kębłowski, P. Martyniuk, J. Piotrowski, and A. Rogalski, Nanoscale Res. Lett. 13, 196 (2018).

    Article  Google Scholar 

  21. M.A. Kinch, J. Electron. Mater. 29, 809 (2000).

    Article  Google Scholar 

  22. M.A. Kinch, Fundamentals of Infrared Detector Materials (Bellingham: SPIE Press, 2007).

    Book  Google Scholar 

  23. H. Wen, B. Pinkie, and E. Bellotti, J. Appl. Phys. 118, 015702 (2015).

    Article  Google Scholar 

  24. J.S. Blakemore, Semiconductor Statistics (Oxford: Pergamon Press, 1962).

    Google Scholar 

  25. B.V.V. Zeghbroeck, Principles of Semiconductor Devices and Heterojunctions, 1st ed. (Upper Saddle River: Prentice Hall, 2010).

    Google Scholar 

  26. X. Ji, B. Liu, H. Tang, X. Yang, X. Li, H. Gong, B. Shen, P. Han, and F. Yan, AIP Adv. 4, 087135 (2014).

    Article  Google Scholar 

  27. A. Rogalski, P. Martyniuk, and M. Kopytko, Appl. Phys. Rev. 4, 031304 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Stefan Birner for assistance with the nextnano software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Easley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Easley, J., Martin, C.R., Ettenberg, M.H. et al. InGaAs/GaAsSb Type-II Superlattices for Short-Wavelength Infrared Detection. J. Electron. Mater. 48, 6025–6029 (2019). https://doi.org/10.1007/s11664-019-07441-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07441-x

Keywords

Navigation