Skip to main content
Log in

Optimum Design, Heat Transfer and Performance Analysis for Thermoelectric Energy Recovery from the Engine Exhaust System

  • Progress and Challenges for Emerging Integrated Energy Modules
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric waste heat recovery can improve the thermal efficiency of internal combustion engines and reduce CO2 emissions. In this study, a mathematical optimization using a genetic algorithm method is applied to obtain the optimal fin parameters of a rectangular offset-strip fin heat exchanger, used with an automotive thermoelectric generator (TEG) system. Three fin parameters are considered (fin spacing, fin thickness and fin height). Their effect on the exhaust pumping power, the exhaust heat transfer coefficient and the system performance is explored. The main goal is to maximize the net power output of the system. Results show that fin spacing has the most significant effect on the system performance. Moreover, when fin spacing is reduced below 0.5 mm, a negative net power output is obtained. By comparing the performance of stainless-steel (SS) and copper heat exchangers, it was found that the SS heat exchanger requires smaller fin spacing and fin height, which induces a higher pressure drop. TEGs with higher maximum operating temperature will allow further utilization of the exhaust heat, without a decline in performance due to overheating. Finally, a maximum net power output of 553.3 W is achieved using the copper heat exchanger and commercial bismuth-telluride (Bi2Te3) thermoelectric modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C p :

Specific heat capacity (J/kg K)

D h :

Hydraulic diameter (m)

f :

Friction factor

h :

Heat transfer coefficient (W/m2 K)

I :

Current (A)

ji :

Colburn factor

k :

Thermal conductivity (W/m K)

L :

Length (m)

m :

Mass flow rate (g/s)

Nu :

Nusselt number

W :

Power (W)

P :

Pressure (pa)

Pr :

Prandtl number

Q :

Volumetric flow rate (m3/s)

q :

Heat flow rate (W)

R :

Electrical resistance (Ω)

Re :

Reynolds number

S :

Seebeck coefficient (V/K)

T :

Temperature (K)

E :

Voltage (V)

V :

Velocity (m/s)

η :

Efficiency (%)

ρ :

Density (kg/m3)

μ :

Dynamic viscosity (kg/m s)

c:

Cold

e:

Electrical

f:

Fin

g:

Exhaust gas

h:

Hot

HX:

Heat exchanger

L:

Load

m:

Module

p:

Pumping

w:

Water

TEG:

Thermoelectric generator

ROSF:

Rectangular offset-strip fin

References

  1. Y.S. Najjar, Int. J. Hydrogen Energy 38, 10716 (2013).

    Article  Google Scholar 

  2. N.J. Lamfon, Y.S.H. Najjar, and M. Akyurt, Fuel Energy Abstr. 39, 51 (1998).

    Google Scholar 

  3. Y.S. Najjar, Energy 36, 4136 (2011).

    Article  Google Scholar 

  4. N.M. Jubeh and Y.S. Najjar, Energy 38, 228 (2012).

    Article  Google Scholar 

  5. Y. Najjar, M. Akyurt, O. Al-Rabghi, and T. Alp, Heat Recovery Syst. CHP 13, 471 (1993).

    Article  Google Scholar 

  6. Y.S. Najjar and A.M. Radhwan, Heat Recovery Syst. CHP 8, 211 (1988).

    Article  Google Scholar 

  7. B.D. In, H.I. Kim, J.W. Son, and K.H. Lee, Int. J. Heat Mass Transf. 86, 667 (2015).

    Article  Google Scholar 

  8. E.F. Thacher, B.T. Helenbrook, M.A. Karri, and C.J. Richter, Proc. Inst. Mech. Eng. D J. Automob. Eng. 221, 95 (2007).

    Article  Google Scholar 

  9. C. Lu, S. Wang, C. Chen, and Y. Li, Appl. Therm. Eng. 89, 270 (2015).

    Article  Google Scholar 

  10. N. Kempf and Y. Zhang, Energy Convers. Manag. 121, 224 (2016).

    Article  Google Scholar 

  11. T.Y. Kim, A.A. Negash, and G. Cho, Energy Convers. Manag. 124, 280 (2016).

    Article  Google Scholar 

  12. T.Y. Kim, S. Lee, and J. Lee, Energy Convers. Manag. 124, 470 (2016).

    Article  Google Scholar 

  13. B. Li, K. Huang, Y. Yan, Y. Li, S. Twaha, and J. Zhu, Appl. Energy 205, 868 (2017).

    Article  Google Scholar 

  14. Q. Cao, W. Luan, and T. Wang, Appl. Therm. Eng. 130, 1472 (2018).

    Article  Google Scholar 

  15. K. Huang, B. Li, Y. Yan, Y. Li, S. Twaha, and J. Zhu, Appl. Therm. Eng. 117, 501 (2017).

    Article  Google Scholar 

  16. S. Krishnan, N.K. Karri, P.K. Gogna, J.R. Chase, J.-P. Fleurial, and T.J. Hendricks, J. Electron. Mater. 41, 1622 (2012).

    Article  Google Scholar 

  17. S. Fan and Y. Gao, Energy 150, 38 (2018).

    Article  Google Scholar 

  18. Hi-Z Technology, HZ-20 product data-sheet, http://hi-z.com/wp-content/uploads/2016/08/HZ-20-Datasheet.pdf.

  19. F.P. Incropera, Fundamentals of Heat and Mass Transfer (Hoboken: Wiley, 2013).

    Google Scholar 

  20. M.A. Karri, Modeling of an Automotive Exhaust Thermoelectric Generator: A Thesis (2005).

  21. J.-Y. Jang and Y.-C. Tsai, Appl. Therm. Eng. 51, 677 (2013).

    Article  Google Scholar 

  22. W.M. Kays and A.L. London, Compact Heat Exchangers (Malabar: Krieger, 1998).

    Google Scholar 

  23. R.M. Manglik and A.E. Bergles, Exp. Therm. Fluid Sci. 10, 171 (1995).

    Article  Google Scholar 

  24. H. Bhowmik and K.-S. Lee, Int. Commun. Heat Mass Transf. 36, 259 (2009).

    Article  Google Scholar 

  25. M. Karri, E. Thacher, and B. Helenbrook, Energy Convers. Manag. 52, 1596 (2011).

    Article  Google Scholar 

  26. S. Yu, Q. Du, H. Diao, G. Shu, and K. Jiao, Energy Convers. Manag. 96, 363 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef S. H. Najjar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najjar, Y.S.H., Sallam, A. Optimum Design, Heat Transfer and Performance Analysis for Thermoelectric Energy Recovery from the Engine Exhaust System. J. Electron. Mater. 48, 5532–5541 (2019). https://doi.org/10.1007/s11664-019-07416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07416-y

Keywords

Navigation