Skip to main content
Log in

Optical Properties of MBE-Grown Hg1−xCdxSe

  • U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we present a study on the temperature-dependent infrared absorption spectra of Hg1−xCdxSe grown by molecular beam epitaxy (MBE) on GaSb (211) substrate, having a nominal x-value of 0.21. For temperatures below 200 K, the observed optical bandgap is found to correspond to the Fermi energy level rather than the intrinsic bandgap, which is quantitatively explained by the Burstein–Moss shift due to the presence of a background electron concentration of 3.5 × 1016 cm−3. In addition, empirical formulae for calculating both the absorption edge and intrinsic absorption coefficient in the Kane region have been derived from the previously reported absorption spectra of Bridgeman-grown Hg1−xCdxSe samples (0.15 ≤ x ≤ 0.3). By employing the empirical expressions, the infrared transmission spectra have been modeled based on the characteristic matrix method, and the x value profile of the sample along the growth direction has been determined, which is in good agreement with the experimental results obtained from secondary ion mass spectrometry (SIMS) depth profiling combined with Rutherford backscattering spectrometry (RBS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Doyle, C.H. Swartz, J.H. Dinan, T.H. Myers, G. Brill, Y.P. Chen, B.L. VanMil, and P. Wijewarnasuriya, J. Vac. Sci. Technol. 31, 03C124 (2013).

    Article  Google Scholar 

  2. K. Doyle, Development of HgCdSe for Third Generation Focal Plane Arrays using Molecular Beam Epitaxy. Texas State University San Marcos United States, 2013.

  3. G.N. Brill, Y.P. Chen, P.S. Wijewarnasuriya, and N.K. Dhar, Phys. Status Solidi A 209, 1423 (2012).

    Article  Google Scholar 

  4. Y.P. Chen, G. Brill, D. Benson, P. Wijewarnasuriya, and N. Dhar, Proc SPIE 8155, 815511 (2011).

    Article  Google Scholar 

  5. C.J. Summers and J.G. Broerman, Phys. Rev. B 21, 559 (1980).

    Article  Google Scholar 

  6. A. Rogalski, Prog. Quantum Electron. 27, 59 (2003).

    Article  Google Scholar 

  7. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).

    Article  Google Scholar 

  8. W. Lei, J. Antoszewski, and L. Faraone, Appl. Phys. Rev. 2, 041303 (2015).

    Article  Google Scholar 

  9. J.P. Zanatta, G. Badano, C. Ph Ballet, J. Largeron, J. Baylet, O. Gravrand, J. Rothman, P. Castelein, J.P. Chamonal, and A. Million, J. Electron. Mater. 35, 1231 (2006).

    Article  Google Scholar 

  10. L. He, L. Chen, Y. Wu, X.L. Fu, Y.Z. Wang, J. Wu, M.F. Yu, J.R. Yang, R.J. Ding, and X.N. Hu, J. Cryst. Growth 301, 268 (2007).

    Article  Google Scholar 

  11. M. Reddy, J.M. Peterson, T. Vang, J.A. Franklin, M.F. Vilela, K. Olsson, E.A. Patten, W.A. Radford, J.W. Bangs, and L. Melkonian, J. Electron. Mater. 40, 1706 (2011).

    Article  Google Scholar 

  12. M. Carmody, A. Yulius, D. Edwall, D. Lee, E. Piquette, R. Jacobs, D. Benson, A. Stoltz, J. Markunas, and A. Almeida, J. Electron. Mater. 41, 2719 (2012).

    Article  Google Scholar 

  13. J. Wenisch, D. Eich, H. Lutz, T. Schallenberg, R. Wollrab, and J. Ziegler, J. Electron. Mater. 41, 2828 (2012).

    Article  Google Scholar 

  14. W. Lei, R.J. Gu, J. Antoszewski, J. Dell, and L. Faraone, J. Electron. Mater. 43, 2788 (2014).

    Article  Google Scholar 

  15. W. Lei, R.J. Gu, J. Antoszewski, J. Dell, G. Neusser, M. Sieger, B. Mizaikoff, and L. Faraone, J. Electron. Mater. 44, 3180 (2015).

    Article  Google Scholar 

  16. W. Lei, Y.L. Ren, I. Madni, and L. Faraone, Infrared Phys. Technol. 92, 96 (2018).

    Article  Google Scholar 

  17. C. R. Whitsett, J. G. Broerman, and C. J. Summers, in Semiconductors and Semimetals (Elsevier, 1981), Vol. 16, pp. 53.

  18. C. R. Whitsett, J. G. Broerman, and C. J. Summers, in Defects, (HgCd)Se, (HgCd)Te (1981), pp. 53.

  19. G. Brill, Y. Chen, and P. Wijewarnasuriya, Proc Spie 8155, 815512 (2011).

    Article  Google Scholar 

  20. G. Brill, Y. Chen, and P. Wijewarnasuriya, J. Electron. Mater. 40, 1679 (2011).

    Article  Google Scholar 

  21. F. C. Peiris, M. V. Lewis, G. Brill, Kevin Doyle and T. H. Myers, J. Electron. Mater. 47, 5715 (2018).

  22. I. Madni, G.A. Umana-Membreno, W. Lei, and L. Faraone, J. Electron. Mater. 47, 5691 (2018).

    Article  Google Scholar 

  23. W. Lei, Y.L. Ren, I. Madni, G.A. Umana-Membreno, and L. Faraone, Infrared Phys. Technol. 92, 197 (2018).

    Article  Google Scholar 

  24. F.C. Peiris, G. Brill, K. Doyle, B. VanMil, and T.H. Myers, J. Electron. Mater. 43, 3056 (2014).

    Article  Google Scholar 

  25. Y. Lansari, J.W. Cook, and J.F. Schetzina, J. Electron. Mater. 22, 809 (1993).

    Article  Google Scholar 

  26. J. Chu, S. Xu, and D. Tang, Appl. Phys. Lett. 43, 1064 (1983).

    Article  Google Scholar 

  27. E. Burstein, Phys. Rev. 93, 632 (1954).

    Article  Google Scholar 

  28. T. S. Moss, In Proc. Phys. Soc. London, Sect. B 67, 775 (1954).

  29. J. Chu, S. Xu, and D. Tang, Phys. Scr. 1986, 37 (1986).

    Article  Google Scholar 

  30. M. Daraselia, M. Carmody, D.D. Edwall, and T.E. Tiwald, J. Electron. Mater. 34, 762 (2005).

    Article  Google Scholar 

  31. J.H. Chu, B. Li, K. Liu, and D.Y. Tang, J. Appl. Phys. 75, 1234 (1994).

    Article  Google Scholar 

  32. E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

    Article  Google Scholar 

  33. J.R. Lindle, W.W. Bewley, I. Vurgaftman, J.R. Meyer, J.L. Johnson, M.L. Thomas, and W.E. Tennant, Phys. E 20, 558 (2004).

    Article  Google Scholar 

  34. R.H. Sewell, J.M. Dell, C.A. Musca, and L. Faraone, Microelectronics: Design Technology, and Packaging 5274, 215 (2004).

    Google Scholar 

  35. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  Google Scholar 

  36. D.E. Aspnes, Thin Solid Films 89, 249 (1982).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council (FT130101708, DP170104562, and LE170100233), and a Research Collaboration Awards from the University of Western Australia. Facilities used in this work are supported by the WA node of the Australian National Fabrication Facility (ANFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W.W., Zhang, Z.K., Lei, W. et al. Optical Properties of MBE-Grown Hg1−xCdxSe. J. Electron. Mater. 48, 6063–6068 (2019). https://doi.org/10.1007/s11664-019-07362-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07362-9

Keywords

Navigation