Skip to main content
Log in

Interdiffusion Effects on Bandstructure in HgTe-CdTe Superlattices for VLWIR Imaging Applications

  • U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a systematic study of interdiffusion in (112)B oriented HgTe/CdTe superlattice (SL) structures has been undertaken in order to investigate the viability of employing SL as the absorber layer for very long wavelength infrared (VLWIR, 15 μm and longer) applications in imaging focal plane arrays. Using numerical analysis, the optimal superlattice parameters and annealing time at the growth temperature (∼ 180°C) are found, which result in better control of the cut-off wavelength in superlattice absorbers compared to the corresponding HgCdTe alloy absorber. Simulations show that, by appropriate adjustment of annealing time, it is possible to achieve the same cut-off wavelength with a larger HgTe well width while the sensitivity of the SL to well width variations remains at 15 meV/nm. Furthermore, the electron effective mass in a SL absorber is larger than a HgCdTe alloy absorber, which results in lower tunneling dark current. This work focuses on optimization of the superlattice absorber using the stationary Schrödinger equation. A complete photodetector device design based on a SL absorber structure will require a comprehensive numerical modeling using a Schrödinger–Poisson solver and drift–diffusion solver, or a combination of both approaches, which will be undertaken in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Schulman and T.C. McGill, Appl. Phys. Lett. 34, 663 (1979).

    Article  Google Scholar 

  2. D.L. Smith, T.C. McGill, and J.N. Schulman, Appl. Phys. Lett. 43, 180 (1983).

    Article  Google Scholar 

  3. Y.D. Zhou, C.R. Becker, Y. Selamet, Y. Chang, R. Ashokan, R.T. Boreiko, T. Aoki, D.J. Smith, A.L. Betz, and S. Sivananthan, J. Electron. Mater. 32, 608 (2003).

    Article  Google Scholar 

  4. A. Simon, D. Bertho, D. Boiron, and C. Jouanin, Phys. Rev. B 42, 5221 (1990).

    Article  Google Scholar 

  5. E.G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C.R. Becker, G. Landwehr, H. Buhmann, and L.W. Molenkamp, Phys. Rev. B 72, 035321 (2005).

    Article  Google Scholar 

  6. C.R. Becker, V. Latussek, A. Pfeuffer-Jeschke, G. Landwehr, and L.W. Molenkamp, Phys. Rev. B 62, 10353 (2000).

    Article  Google Scholar 

  7. Y. Selamet, Y.D. Zhou, J. Zhao, Y. Chang, C.R. Becker, R. Ashokan, C.H. Grein, and S. Sivananthan, J. Electron. Mater. 33, 503 (2004).

    Article  Google Scholar 

  8. S.D. Hatch, C.A. Musca, C.R. Becker, J.M. Dell, and L. Faraone, Appl. Phys. Lett. 98, 043505 (2011).

    Article  Google Scholar 

  9. P. Ballet, C. Thomas, X. Baudry, C. Bouvier, O. Crauste, T. Meunier, G. Badano, M. Veillerot, J.P. Barnes, P.H. Jouneau, and L.P. Levy, J. Electron. Mater. 43, 2955 (2014).

    Article  Google Scholar 

  10. P. Sengupta, T. Kubis, Y. Tan, M. Povolotskyi, and G. Klimeck, J. Appl. Phys. 114, 043702 (2013).

    Article  Google Scholar 

  11. J. Li, C. He, L. Meng, H. Xiao, C. Tang, X. Wei, J. Kim, N. Kioussis, G.M. Stocks, and J. Zhong, Sci. Rep. 5, 14115 (2015).

    Article  Google Scholar 

  12. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  Google Scholar 

  13. C.R. Becker, V. Latussek, G. Landwehr, and L.W. Molenkamp, Phys. Rev. B 68, 035202 (2003).

    Article  Google Scholar 

  14. A. Dargys, Phys. Status Solidi (b) 245, 1483 (2008).

    Article  Google Scholar 

  15. C.H. Grein, H. Jung, R. Singh, and M.E. Flatté, J. Electron. Mater. 34, 905 (2005).

    Article  Google Scholar 

  16. S.A. Svoronos, W.W. Woo, S.J.C. Irvine, H.O. Sankur, and J. Bajaj, J. Electron. Mater. 25, 1561 (1996).

    Article  Google Scholar 

  17. C.D. Maxey, J.P. Camplin, I.T. Guilfoy, J. Gardner, R.A. Lockett, C.L. Jones, P. Capper, M. Houlton, and N.T. Gordon, J. Electron. Mater. 32, 656 (2003).

    Article  Google Scholar 

  18. P. Mitra, F.C. Case, and M.B. Reine, J. Electron. Mater. 27, 510 (1998).

    Article  Google Scholar 

  19. I.M. Baker, G. Finger, and K. Barnes, in SPIE Defense + Security (SPIE, 2014), p. 10.

  20. C.R. Becker, Phys. Status Solidi (b) 251, 1125 (2014).

    Article  Google Scholar 

  21. N.D. Akhavan, G.A. Umana-Membreno, R. Gu, M. Asadnia, J. Antoszewski, and L. Faraone, IEEE Trans. Electron Devices 63, 4811-4818 (2016). https://doi.org/10.1109/TED.2016.2614677.

    Article  Google Scholar 

  22. N.D. Akhavan, G.A. Umana-Membreno, R. Gu, J. Antoszewski, and L. Faraone, IEEE Trans. Electron Devices 65, 591 (2018).

    Article  Google Scholar 

  23. J. Wenus, J. Rutkowski, and A. Rogalski, IEEE Trans. Electron Devices 48, 1326 (2001).

    Article  Google Scholar 

  24. M. Kopytko, J. Wróbel, K. Jóźwikowski, A. Rogalski, J. Antoszewski, N.D. Akhavan, G.A. Umana-Membreno, L. Faraone, and C.R. Becker, J. Electron. Mater. 44, 158 (2014).

    Article  Google Scholar 

  25. N.F. Johnson, P.M. Hui, and H. Ehrenreich, Phys. Rev. Lett. 61, 1993 (1988).

    Article  Google Scholar 

  26. R. Sporken, S. Sivananthan, J.P. Faurie, D.H. Ehlers, J. Fraxedas, L. Ley, J.J. Pireaux, and R. Caudano, J. Vac. Sci. Technol. 7, 427 (1989).

    Article  Google Scholar 

  27. D. Eich, K. Ortner, U. Groh, Z.H. Chen, C.R. Becker, G. Landwehr, R. Fink, and E. Umbach, Phys. Status Solidi (a) 173, 261 (1999).

    Article  Google Scholar 

  28. K.H. Yoo, R.L. Aggarwal, L.R. Ram-Mohan, and O.K. Wu, J. Vac. Sci. Technol. 8, 1194 (1990).

    Article  Google Scholar 

  29. G.M. Minkov, V. Ya Aleshkin, O.E. Rut, A.A. Sherstobitov, A.V. Germanenko, S.A. Dvoretski, and N.N. Mikhailov, Phys. Rev. B 96, 035310 (2017).

    Article  Google Scholar 

  30. M. Penna, A. Marnetto, F. Bertazzi, E. Bellotti, and M. Goano, J. Electron. Mater. 38, 1717 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The work has been undertaken with the financial support of the Australian Research Council Discovery Projects (Grants DP120104835, DP140103667, DP150104839 and DP170104555), the Australian National Fabrication Facility (ANFF) and the State Government of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Akhavan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhavan, N.D., Umana-Membreno, G.A., Gu, R. et al. Interdiffusion Effects on Bandstructure in HgTe-CdTe Superlattices for VLWIR Imaging Applications. J. Electron. Mater. 48, 6159–6168 (2019). https://doi.org/10.1007/s11664-019-07353-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07353-w

Keywords

Navigation