Skip to main content
Log in

Development of InAs/InAsSb Type II Strained-Layer Superlattice Unipolar Barrier Infrared Detectors

  • U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We recently reported mid-wavelength infrared (MWIR) InAs/InAsSb type II strained-layer superlattice (T2SLS) unipolar barrier detectors and focal-plane arrays with significantly higher operating temperature than InSb. Herein, we document the development leading to the MWIR InAs/InAsSb T2SLS detectors at the NASA Jet Propulsion Laboratory. We also briefly compare the InAs/InAsSb T2SLS with some other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.Z. Ting, A. Soibel, A. Khoshakhlagh, S.B. Rafol, S.A. Keo, L. Höglund, A.M. Fisher, E.M. Luong, and S.D. Gunapala, Appl. Phys. Lett. 113, 021101 (2018).

    Article  Google Scholar 

  2. D.Z. Ting, S.B. Rafol, K.A. Sam, J. Nguyen, A. Khoshakhlagh, A. Soibel, L. Höglund, A.M. Fisher, E.M. Luong, J.M. Mumolo, J.K. Liu, and S.D. Gunapala, IEEE Photon. J. 10, 6804106 (2018).

    Article  Google Scholar 

  3. S. Maimon and G.W. Wicks, Appl. Phys. Lett. 89, 151109 (2006).

    Article  Google Scholar 

  4. A. Soibel, C.J. Hill, S.A. Keo, L. Höglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D.Z.-Y. Ting, and S.D. Gunapala, Appl. Phys. Lett. 105, 023512 (2014).

    Article  Google Scholar 

  5. A. Soibel, S.A. Keo, A. Fisher, C.J. Hill, E. Luong, D.Z. Ting, S.D. Gunapala, D. Lubyshev, Y. Qiu, J.M. Fastenau, and A.W.K. Liu, Appl. Phys. Lett. 112, 041105 (2018).

    Article  Google Scholar 

  6. D.Z.-Y. Ting, S.V. Bandara, S.D. Gunapala, J.M. Mumolo, S.A. Keo, C.J. Hill, J.K. Liu, E.R. Blazejewski, S.B. Rafol, and Y.-C. Chang, Appl. Phys. Lett. 94, 111107 (2009).

    Article  Google Scholar 

  7. S.D. Gunapala, S.V. Bandara, C.J. Hill, D.Z. Ting, J.K. Liu, S.B. Rafol, E.R. Blazejewski, J.M. Mumolo, S.A. Keo, S. Krishna, Y.-C. Chang, and C.A. Shott, IEEE J. Quantum Electron. 43, 230 (2007).

    Article  Google Scholar 

  8. C.J. Hill, A. Soibel, S.A. Keo, J.M. Mumolo, D.Z. Ting, and S.D. Gunapala, Electron. Lett. 46, 1286 (2010).

    Article  Google Scholar 

  9. D.Z.-Y. Ting, A. Soibel, S.A. Keo, A. Khoshakhlagh, C.J. Hill, L. Höglund, J.M. Mumolo, and S.D. Gunapala, J. Electron. Mater. 42, 3071 (2013).

    Article  Google Scholar 

  10. C.J. Hill, D.Z. Ting, and S.D. Gunapala, U.S. Patent Application 2010/0155777 (2010); U.S. patent 9,466,741 (2016).

  11. A. Soibel, D.Z. Ting, C.J. Hill, A.M. Fisher, L. Höglund, S.A. Keo, and S.D. Gunapala, Appl. Phys. Lett. 109, 103505 (2016).

    Article  Google Scholar 

  12. L. Höglund, D.Z. Ting, A. Khoshakhlagh, A. Soibel, C.J. Hill, A. Fisher, S. Keo, and S.D. Gunapala, Appl. Phys. Lett. 103, 221908 (2013).

    Article  Google Scholar 

  13. W.E. Tennant, J. Electron. Mater. 39, 1030 (2010).

    Article  Google Scholar 

  14. D.Z. Ting, A. Soibel, A. Khoshakhlagh, S.A. Keo, S.B. Rafol, A.M. Fisher, B.J. Pepper, E.M. Luong, C.J. Hill, and S.D. Gunapala, SPIE Proceedings Volume 10624, Infrared Technology and Applications XLIV; 1062410 (2018).

  15. D.Z. Ting, A. Khoshakhlagh, A. Soibel, C.J. Hill, and S.D. Gunapala, U.S. Patent Application 13/197,588 (2011); U.S. Patent 8,217,480 (2012).

  16. E.H. Steenbergen, B.C. Connelly, G.D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J.M. Fastenau, A.W.K. Liu, S. Elhamri, O.O. Cellek, and Y.-H. Zhang, Appl. Phys. Lett. 99, 251110 (2011).

    Article  Google Scholar 

  17. H.S. Kim, O.O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, Appl. Phys. Lett. 101, 161114 (2012).

    Article  Google Scholar 

  18. D. Wu, Q. Durlin, A. Dehzangi, Y. Zhang, and M. Razeghi, Appl. Phys. Lett. 114, 011104 (2019).

    Article  Google Scholar 

  19. A. Haddadi, G. Chen, R. Chevallier, A.M. Hoang, and M. Razeghi, Appl. Phys. Lett. 105, 121104 (2014).

    Article  Google Scholar 

  20. A. Haddadi, A. Dehzangi, S. Adhikary, R. Chevallier, and M. Razeghi, APL Mater. 5, 035502 (2017).

    Article  Google Scholar 

  21. R. Chevallier, A. Haddadi, and M. Razeghi, Nat. Sci. Rep. 7, 12617 (2017).

    Article  Google Scholar 

  22. A.M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi, Appl. Phys. Lett. 104, 251105 (2014).

    Article  Google Scholar 

  23. A. Haddadi, R. Chevallier, G. Chen, A.M. Hoang, and M. Razeghi, Appl. Phys. Lett. 106, 011104 (2015).

    Article  Google Scholar 

  24. E.A. Plis, T. Schuler-Sandy, D.A. Ramirez, S. Myers, and S. Krishna, Electron. Lett. 51, 2009 (2015).

    Article  Google Scholar 

  25. R. Hao, Y. Ren, S. Liu, J. Guo, G. Wang, Y. Xu, and Z. Niu, J. Cryst. Growth 470, 33 (2017).

    Article  Google Scholar 

  26. K. Michalczewski, Ł. Kubiszyn, P. Martyniuk, C.H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, Infrared Phys. Technol. 95, 222 (2018).

    Article  Google Scholar 

  27. D.J.P. Perez, L. Cerutti, J.B. Rodriguez, T. Cerba, T. Baron, E. Tournié, and P. Christol, Infrared Phys. Technol. 96, 39 (2019).

    Article  Google Scholar 

  28. M.A. Kinch, Fundamentals of Infrared Detector Materials (Bellingham: SPIE Press, 2007), p. 57.

    Book  Google Scholar 

  29. B.V. Olson, E.A. Shaner, J.K. Kim, J.F. Klem, S.D. Hawkins, L.M. Murray, J.P. Prineas, M.E. Flatte, and T.F. Boggess, Appl. Phys. Lett. 101, 092109 (2012).

    Article  Google Scholar 

  30. T. Ashley and C.T. Elliot, Electron. Lett. 21, 451 (1985).

    Article  Google Scholar 

  31. D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W.E. Tennant, J. Electron. Mater. 45, 4587 (2016).

    Article  Google Scholar 

  32. P.C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, J. Electron. Mater. 43, 2984 (2014).

    Article  Google Scholar 

  33. I. Vurgaftman, G. Belenky, Y. Lin, D. Donetsky, L. Shterengas, G. Kipshidze, W.L. Sarney, and S.P. Svensson, Appl. Phys. Lett. 108, 222101 (2016).

    Article  Google Scholar 

  34. D.Z. Ting, A. Soibel, and S.D. Gunapala, Appl. Phys. Lett. 108, 183504 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank J. Nguyen, J. M. Mumolo, J. K. Liu, and A. Liao for technical assistance. The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Z. Ting.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, D.Z., Soibel, A., Khoshakhlagh, A. et al. Development of InAs/InAsSb Type II Strained-Layer Superlattice Unipolar Barrier Infrared Detectors. J. Electron. Mater. 48, 6145–6151 (2019). https://doi.org/10.1007/s11664-019-07255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07255-x

Keywords

Navigation