Quantitative and Qualitative Characterization of Pure Copper Chromite Nanocomposites for Photodegradation of p-Nitrophenol in Aqueous Medium

Abstract

A series of copper chromite samples with different Cu/Cr molar ratios (0.5, 0.6, 0.7, 0.8, 0.9, 1, and 2) have been synthesized using the citric acid complexation sol–gel method from Cu(NO3)2·3H2O and Cr(NO3)3·9H2O precursor salts. The amounts of Cr2O3 and CuO in the samples were qualitatively and quantitatively confirmed by titration, and the samples were fully characterized using various common techniques such as x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy-dispersive x-ray (EDAX) spectroscopy, transmission electron microscopy, and Fourier-transform infrared (FT-IR) spectroscopy. The XRD spectra of the samples showed the presence of CuCr2O4 and CuO as major and minor phase, respectively. SEM analysis determined the morphology of the samples to be spherical or quasispherical with low degree of homogeneity, while the presence of Cu, Cr, and O atoms was proved by EDAX without other impurity elements. FT-IR spectroscopy demonstrated the presence of Cu–O or Cr–O bonds in the range of 400 cm−1 to 700 cm−1. The photocatalytic activity of the as-prepared samples was tested in removal of p-nitrophenol from aqueous solution. The results showed that the sample with Cu/Cr = 0.6 exhibited the highest photodegradation percentage (and also degradation rate) during 100 min of light exposure.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. Yang, E.Y. Liya, and M.B. Ray, Water Res. 42, 3480 (2008).

    Article  Google Scholar 

  2. 2.

    C.-H. Kuo, Y.-C. Yang, S. Gwo, and M.H. Huang, J. Am. Chem. Soc. 133, 1052 (2010).

    Article  Google Scholar 

  3. 3.

    M. Yazdanbakhsh, I. Khosravi, E.K. Goharshadi, and A. Youssefi, J. Hazard. Mater. 184, 684 (2010).

    Article  Google Scholar 

  4. 4.

    Y. Sun, J. Liu, and Z. Li, J. Solid State Chem. 184, 1924 (2011).

    Article  Google Scholar 

  5. 5.

    H. Huang, D. Li, Q. Lin, W. Zhang, Y. Shao, Y. Chen, M. Sun, and X. Fu, Environ. Sci. Technol. 43, 4164 (2009).

    Article  Google Scholar 

  6. 6.

    K. Barick, S. Singh, M. Aslam, and D. Bahadur, Microporous Mesoporous Mater. 134, 195 (2010).

    Article  Google Scholar 

  7. 7.

    J. Gupta, K. Barick, and D. Bahadur, J. Alloys Compd. 509, 6725 (2011).

    Article  Google Scholar 

  8. 8.

    Y. Li, T. Sasaki, Y. Shimizu, and N. Koshizaki, J. Am. Chem. Soc. 130, 14755 (2008).

    Article  Google Scholar 

  9. 9.

    R. Rao, A. Dandekar, R. Baker, and M. Vannice, J. Catal. 171, 406 (1997).

    Article  Google Scholar 

  10. 10.

    R. Prasad, Mater. Lett. 59, 3945 (2005).

    Article  Google Scholar 

  11. 11.

    Z. Ma, Z. Xiao, J.A. van Bokhoven, and C. Liang, J. Mater. Chem. 20, 755 (2010).

    Article  Google Scholar 

  12. 12.

    K. George and S. Sugunan, Catal. Commun. 9, 2149 (2008).

    Article  Google Scholar 

  13. 13.

    S. Barman, N.C. Pradhan, A. Acharya, and P. Pramanik, Ind. Eng. Chem. Res. 45, 3481 (2006).

    Article  Google Scholar 

  14. 14.

    H. Wang, L. Chen, D. Luan, Y. Li, X. Yan, Y. Zhang, and J. Xing, React. Kinet. Catal. Lett. 89, 201 (2006).

    Article  Google Scholar 

  15. 15.

    R.V. Green and D. Moses, Sewage Ind. Waste. 24, 288 (1952).

    Google Scholar 

  16. 16.

    V. Vlasenko and V. Chernobrivets, Russ. J. Appl. Chem. 75, 1262 (2002).

    Article  Google Scholar 

  17. 17.

    J. Laine and F. Severino, Appl. Catal. 65, 253 (1990).

    Article  Google Scholar 

  18. 18.

    W. Li, H. Cheng, and J. Cent, South Univ. Technol. 14, 291 (2007).

    Article  Google Scholar 

  19. 19.

    S.G. Hosseini, R. Abazari, and A. Gavi, Solid State Sci. 37, 72 (2014).

    Article  Google Scholar 

  20. 20.

    S. Saadi, A. Bouguelia, and M. Trari, Renew. Energy 31, 2245 (2006).

    Article  Google Scholar 

  21. 21.

    J. Yan, L. Zhang, H. Yang, Y. Tang, Z. Lu, S. Guo, Y. Dai, Y. Han, and M. Yao, Sol. Energy 83, 1534 (2009).

    Article  Google Scholar 

  22. 22.

    S. Boumaza, R. Bouarab, M. Trari, and A. Bouguelia, Energy Convers. Manage. 50, 62 (2009).

    Article  Google Scholar 

  23. 23.

    T. Valdes-Solis, G. Marban, and A. Fuertes, Catal. Today 116, 354 (2006).

    Article  Google Scholar 

  24. 24.

    S. Boumaza, A. Auroux, S. Bennici, A. Boudjemaa, M. Trari, A. Bouguelia, and R. Bouarab, React. Kinet. Mech. Catal. 100, 145 (2010).

    Google Scholar 

  25. 25.

    D.M. Ginosar, H.W. Rollins, L.M. Petkovic, K.C. Burch, and M.J. Rush, Int. J. Hydrogen Energy 34, 4065 (2009).

    Article  Google Scholar 

  26. 26.

    T.P. Maniecki, P. Mierczynski, W. Maniukiewicz, K. Bawolak, D. Gebauer, and W.K. Jozwiak, Catal. Lett. 130, 481 (2009).

    Article  Google Scholar 

  27. 27.

    A. Pattiya, J.O. Titiloye, and A.V. Bridgwater, J. Anal. Appl. Pyrolysis 81, 72 (2008).

    Article  Google Scholar 

  28. 28.

    B.M. Latha, V. Sadasivam, and B. Sivasankar, Catal. Commun. 8, 1070 (2007).

    Article  Google Scholar 

  29. 29.

    Z. Li and M. Flytzani-Stephanopoulos, Ind. Eng. Chem. Res. 36, 187 (1997).

    Article  Google Scholar 

  30. 30.

    W. Xiong and G.M. Kale, Sens. Actuators B: Chem. 119, 409 (2006).

    Article  Google Scholar 

  31. 31.

    D. Li, X. Fang, W. Dong, Z. Deng, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, and X. Zhu, J. Phys. D Appl. Phys. 42, 055009 (2009).

    Article  Google Scholar 

  32. 32.

    H. Cui, M. Zayat, and D. Levy, J. Sol Gel. Sci. Technol. 35, 175 (2005).

    Article  Google Scholar 

  33. 33.

    K.C. Patil, S.T. Aruna, and S. Ekambaram, Curr. Opin. Sol. State Mater. Sci. 2, 158 (1997).

    Article  Google Scholar 

  34. 34.

    H. Adkins and R. Connor, J. Am. Chem. Soc. 53, 1091 (1931).

    Article  Google Scholar 

  35. 35.

    I. Capek, Adv. Colloid Interface Sci. 110, 49 (2004).

    Article  Google Scholar 

  36. 36.

    J. Arboleda, A. Echavarria, and L.A. Palacio, Powder Diffr. 24, 244 (2009).

    Article  Google Scholar 

  37. 37.

    M. Cauqui, J. Rodriguez-Izquierdo, and J. Non-Cryst, Solids 147, 724 (1992).

    Google Scholar 

  38. 38.

    C.J. Brinker and G. Scherer, Sol–gel Sciences: The Processing and the Chemistry of Sol-gel Processing (San Diego, CA: Academic Press, 1990).

  39. 39.

    M. Kakihana, J. Sol Gel. Sci. Technol. 6, 7 (1996).

    Article  Google Scholar 

  40. 40.

    W. Li and H. Cheng, J. Alloys Compd. 448, 287 (2008).

    Article  Google Scholar 

  41. 41.

    M.H. Habibi and F. Fakhri, Synth. React. Inorg. Met. Org. Chem. 46, 847 (2016).

    Article  Google Scholar 

  42. 42.

    B.J. Kennedy and Q. Zhou, J. Solid State Chem. 181, 2227 (2008).

    Article  Google Scholar 

  43. 43.

    M. Tovar, R. Torabi, C. Welker, and F. Fleischer, Phys. B: Condens. Matter. 385, 196 (2006).

    Article  Google Scholar 

  44. 44.

    Y. Bessekhouad and M. Trari, Int J. Hydrogen Energy 27, 357 (2002).

    Article  Google Scholar 

  45. 45.

    B.D. Cullity, Elements of X-Ray Diffraction (New York: Prentice-Hall, 2001).

    Google Scholar 

  46. 46.

    G.-Y. Guo, Y.-L. Chen, and W.-J. Ying, Mater. Chem. Phys. 84, 308 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Malek Ashtar University of Technology for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyed Ghorban Hosseini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.G., Sharifnezhad, H. & Fathollahi, M. Quantitative and Qualitative Characterization of Pure Copper Chromite Nanocomposites for Photodegradation of p-Nitrophenol in Aqueous Medium. Journal of Elec Materi 48, 4207–4216 (2019). https://doi.org/10.1007/s11664-019-07192-9

Download citation

Keywords

  • Copper chromite
  • copper oxide
  • photocatalyst
  • photodegradation
  • p-nitrophenol