Skip to main content
Log in

Development of Electron Beam Induced Current Characterization of HgCdTe Based Photodiodes

  • U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, HgCdTe photodiodes are characterized by low temperature electron beam induced current (EBIC), with an emphasis on the impact of electron beam energy on the spatial resolution. Monte Carlo simulations are compared to experimental measurements using a comb shaped junction pattern. With a 15 keV electron beam, both converge to a resolution in the 1.3–1.4 μm range. On cross-section samples, lowering the beam energy to 2 keV leads to a 40 nm resolution. In regard to photodiode technologies, namely extrinsic p-on-n and intrinsic n-on-p Hg0.7Cd0.3Te, top view and cross-section typical EBIC characteristic decay lengths are measured. While EBIC exponential decays show no bias voltage dependence suggesting that the system is dominated by diffusion and not drift, the impact of the injection level on transport properties is discussed in regard to the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Gravrand, G. Destefanis, S. Bisotto, N. Baier, J. Rothman, L. Mollard, D. Brellier, L. Rubaldo, A. Kerlain, V. Destefanis, and M. Vuillermet, J. Electron. Mater. 42, 3349 (2013).

    Article  Google Scholar 

  2. J. Boersma, J.J.E. Indenkleef, and H.K. Kuiken, J. Eng. Math. 18, 315 (1984).

    Article  Google Scholar 

  3. F. Berz and H.K. Kuiken, Solid-State Electron. 19, 437 (1976).

    Article  Google Scholar 

  4. V.K.S. Ong, J.C.H. Phang, and D.S.H. Chan, Solid-State Electron. 37, 1 (1994).

    Article  Google Scholar 

  5. D.S.H. Chan, V.K.S. Ong, and J.C.H. Phang, IEEE Trans. Electron Devices 42, 963 (1995).

    Article  Google Scholar 

  6. S.L. Price, in 1984 International Electron Devices Meeting, San Francisco, CA, 1984, pp. 560–563. https://doi.org/10.1109/IEDM.1984.190781.

  7. B.E. Artz, J. Appl. Phys. 57, 2886 (1985).

    Article  Google Scholar 

  8. J. Franc, E. Belas, A.L. Toth, H. Sitter, P. Hlidek, P. Moravec, and P. Höschl, J. Cryst. Growth 197, 593 (1999).

    Article  Google Scholar 

  9. L.O. Bubulac, W.E. Tennant, S.H. Shin, C.C. Wang, M. Lanir, E.R. Gertner, and E.D. Marshall, Jpn. J. Appl. Phys. 19, 495 (1980).

    Article  Google Scholar 

  10. I.G. Gale, J.B. Clegg, S. Mugford, C.D. Maxey, S. Barton, P. Capper, M. Hastings, and C.L. Jones, Semicond. Sci. Technol. 8, S281 (1993).

    Article  Google Scholar 

  11. M.P. Hastings, C.D. Maxey, B.E. Matthews, N.E. Metcalfe, P. Capper, C.L. Jones, and I.G. Gale, J. Cryst. Growth 138, 917 (1994).

    Article  Google Scholar 

  12. R. Haakenaasen, T. Colin, H. Steen, and L. Trosdahl-Iversen, J. Electron. Mater. 29, 849 (2000).

    Article  Google Scholar 

  13. M. Lanir, A.H.B. Vanderwyck, and C.C. Wang, J. Electron. Mater. 8, 175 (1979).

    Article  Google Scholar 

  14. J.H. Tregilgas, J. Vac. Sci. Technol. 21, 208 (1982).

    Article  Google Scholar 

  15. T.M. Moore and H.F. Schaake, J. Vac. Sci. Technol. Vac. Surf. Films 1, 1666 (1983).

    Article  Google Scholar 

  16. C. Blanchard, J.F. Barbot, M. Cahoreau, J.C. Desoyer, D. Le Scoul, and J.L. Dessus, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 47, 15 (1990).

    Article  Google Scholar 

  17. A. Cohn and G. Caledonia, J. Appl. Phys. 41, 3767 (1970).

    Article  Google Scholar 

  18. T.E. Everhart and P.H. Hoff, J. Appl. Phys. 42, 5837 (1971).

    Article  Google Scholar 

  19. K. Kanaya and S. Okayama, J. Phys. Appl. Phys. 5, 43 (1972).

    Article  Google Scholar 

  20. C. Donolato, Solid-State Electron. 28, 1143 (1985).

    Article  Google Scholar 

  21. D.E. Ioannou and C.A. Dimitriadis, IEEE Trans. Electron Devices 29, 445 (1982).

    Article  Google Scholar 

  22. D.B. Wittry and D.F. Kyser, J. Appl. Phys. 38, 375 (1967).

    Article  Google Scholar 

  23. D.F. Kyser and D.B. Wittry, Proc. IEEE 55, 733 (1967).

    Article  Google Scholar 

  24. K.L. Luke, O. von Roos, and L.-J. Cheng, J. Appl. Phys. 57, 1978 (1985).

    Article  Google Scholar 

  25. J. Bonard and J. Ganière, J. Appl. Phys. 79, 6987 (1996).

    Article  Google Scholar 

  26. O. Gravrand, L. Mollard, C. Largeron, N. Baier, E. Deborniol, and P. Chorier, J. Electron. Mater. 38, 1733 (2009).

    Article  Google Scholar 

  27. A. Yèche, F. Boulard, C. Cervera, J.P. Perez, J.B. Rodriguez, P. Christol, and O. Gravrand, Infrared Phys. Technol. 95, 170 (2018). https://doi.org/10.1016/j.infrared.2018.10.005.

    Article  Google Scholar 

  28. L. Mollard, G. Destefanis, N. Baier, J. Rothman, P. Ballet, J.P. Zanatta, M. Tchagaspanian, A.M. Papon, G. Bourgeois, J.P. Barnes, C. Pautet, and P. Fougères, J. Electron. Mater. 38, 1805 (2009).

    Article  Google Scholar 

  29. J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, J. Electron. Mater. 41, 2928 (2012).

    Article  Google Scholar 

  30. G.L. Destéfanis, J. Cryst. Growth 86, 700 (1988).

    Article  Google Scholar 

  31. C. Donolato, J. Appl. Phys. 66, 4524 (1989).

    Article  Google Scholar 

  32. M. Nichterwitz and T. Unold, J. Appl. Phys. 114, 134504 (2013).

    Article  Google Scholar 

  33. J.E. Moore, C.A. Affouda, S.I. Maximenko, and P. Jenkins, J. Appl. Phys. 124, 113102 (2018).

    Article  Google Scholar 

  34. M.A. Kinch, F. Aqariden, D. Chandra, P.-K. Liao, H.F. Schaake, and H.D. Shih, J. Electron. Mater. 34, 880 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yèche.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yèche, A., Boulard, F. & Gravrand, O. Development of Electron Beam Induced Current Characterization of HgCdTe Based Photodiodes. J. Electron. Mater. 48, 6045–6052 (2019). https://doi.org/10.1007/s11664-019-07140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07140-7

Keywords

Navigation