Skip to main content
Log in

Effective Defect Passivation by Hydrogen Using a Laser Light Source

  • Electronic Materials for Renewable Energy Applications 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents a detailed investigation of the effect of a diode laser-induced thermal process on the hydrogen passivation of boron–oxygen (B–O) defects using numerical modelling. A state-of-the-art numerical model is developed using OpenFOAM based on a finite volume approach. The model considered dissociation, formation and passivation of the B–O defects including four reaction kinetics, and solved the coupled thermal equations and kinetic models. The developed model is then applied to elucidate the influence of passivation, as well as the formation of a B–O defect complex using laser-induced thermal phenomena by varying the key parameters of laser power and exposure time. The results reveal some interesting insights on how the hydrogen evolves out of the B–O defect sites, in the form of dissociation, when the exposure time is higher than 20 s, and hence affect the hydrogenated defect passivation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Lee, M.F. Bhopal, D.W. Lee, and S.H. Lee, Mater. Sci. Semicond. Process. 79, 66 (2018).

    Article  CAS  Google Scholar 

  2. P. Santos, J. Coutinho, and S. Oberg, Mater. Sci. Semicond. Process. 123, 1 (2018).

    Google Scholar 

  3. S.R. Wenham, C.B. Honsberg, and M.A. Green, Sol. Energy Mater. Sol. Cells 34, 101 (1994).

    Article  CAS  Google Scholar 

  4. A. Wenham, L. Song, M. Abbott, I. Zafirovska, S. Wang, B. Hallam, C. Chan, A. Barnett, and S. Wenham, Front. Energy 11, 60 (2017).

    Article  Google Scholar 

  5. Z. Wang, L. Zhang, S. Shi, P. Zhang, X. Cao, and B. Wang, J. Electron. Mater. 45, 5064 (2016).

    Article  CAS  Google Scholar 

  6. T. Basu, M. Ray, N.R. Bandyopadhay, A.K. Pramanik, and S.M. Hossain, J. Electron. Mater. 42, 403 (2013).

    Article  CAS  Google Scholar 

  7. P.N. Vinod, J. Electron. Mater. 42, 29052909 (2013).

    Article  Google Scholar 

  8. D. Chen, P.G. Hamer, M. Kim, T.H. Fung, G.B. Sicotte, S. Liu, C.E. Chan, A. Ciesla, R. Chen, M.D. Abbott, B.J. Hallam, and S.R. Wenham, Sol. Energy Mater. Sol. Cells 185, 174 (2018).

    Article  CAS  Google Scholar 

  9. V. Yelundur, A. Rohatgi, J.W. Jeong, A.M. Gabor, J.I. Hanoka, and R.L. Wallace, Proceedings of the 28th IEEE Photovoltaic Specialists Conference 91–94 (2000).

  10. A. Rohatgi and J.W. Jeong, Appl. Phys. Lett. 82, 224 (2003).

    Article  CAS  Google Scholar 

  11. A. Rohatgi, V. Yelundur, J. Jeong, A. Ebong, M.D. Rosenblum, and J.I. Hanoka, Sol. Energy Mater. Sol. Cells 74, 117 (2002).

    Article  CAS  Google Scholar 

  12. B. Hallam, P. Hamer, S. Wenham, M. Abbott, A. Sugianto, A. Wenham, and C. Chan, IEEE J. Photovolt. 4, 88 (2004).

    Article  Google Scholar 

  13. B. Hallam, D. Chen, M. Kim, B. Stefani, B. Hoex, M. Abbott, and S. Wenham, Phys. Status Solidi A 1700305, 1 (2017).

    Google Scholar 

  14. B. Hallam, M. Abott, N. Nampalli, P. Hammer, and S. Wenham, J. Appl. Phys. 119, 1 (2016).

    Google Scholar 

  15. P. Hamer, B. Hallam, R.S. Bonilla, P.P. Altermatt, P. Wilshaw, and S. Wenham, J. Appl. Phys. 123, 1 (2018).

    Google Scholar 

  16. P. Hamer, C. Chan, R.S. Bonilla, B. Hallam, G.B. Sicotte, K.A. Collett, S. Wenham, and P.R. Wilshaw, Sol. Energy Mater. Sol. Cells 184, 91 (2018).

    Article  CAS  Google Scholar 

  17. M. Stavola, F. Jiang, A. Rhotagi, J. Holt, H. Atwater, and J. Kalejs, 3 rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan (2003).

  18. G. Hahn and A. Schonecker, J. Appl. Phys. Condensed Matter 16, 16151648 (2004).

    Google Scholar 

  19. C.M. Chong, S. Wenham, J. Ji, L. Mai, S. Wang, B. Hallam, and H. Li, Int. J. Photoenergy 2018, 1 (2018).

    Article  Google Scholar 

  20. M.S. Ahmmed, L. Song, and N. Huda, Phys. Status Solidi A 201800060, 1 (2018).

    Google Scholar 

  21. L. Song, X. Zheng, J. Fu, and Z. Ji, J. Alloys Compd. 698, 892 (2017).

    Article  CAS  Google Scholar 

  22. L. Song, A. Wenham, S. Wang, P. Hamer, M.S. Ahmmed, B. Hallam, L. Mai, M. Abbott, E.R. Hawkes, C. Chong, and S. Wenham, Int. J Photoenergy 193892, 1 (2015).

    Article  Google Scholar 

  23. L. Song, L. Mai, and S. Wenham, Sol. Energy 122, 341346 (2015).

    Article  Google Scholar 

  24. L. Song, Appl. Phys. A 122, 930 (2016).

    Article  Google Scholar 

  25. L. Song, A. Wenham, and S. Wenham, Sol. Energy Mater. Sol. Cells 149, 221225 (2016).

    Article  Google Scholar 

  26. L. Song, J. Wilson, and J. Lee, J. Phys. D Appl. Phys. 49, 315601 (2016).

    Article  Google Scholar 

  27. F. Jiang, M. Stavola, A. Rohatgi, D. Kim, J. Holt, H. Atwater, and J. Kalejs, Appl. Phys. Lett. 83, 931 (2003).

    Article  Google Scholar 

  28. R. Wood and G. Geist, Phys. Rev. B: Condens. Matter 34, 26062619 (1986).

    Google Scholar 

  29. M.A. Green, Sol. Energy Mater. Sol. Cells 92, 1305 (2008).

    Article  CAS  Google Scholar 

  30. N.M. Ravindra, K. Ravindra, S. Mahendra, B. Sopori, and A.T. Fiory, J. Electron. Mater. 32, 1052 (2003).

    Article  CAS  Google Scholar 

  31. B. Sopori, W. Chen, J. Madjdpour, and N.M. Ravindra, J. Electron. Mater. 28, 1385 (1999).

    Article  CAS  Google Scholar 

  32. T.T. Rantala and J. Levoska, J. Appl. Phys. 65, 4475 (1989).

    Article  Google Scholar 

  33. H.W. Lo and A. Compaan, J. Appl. Phys. 51, 1565 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present contribution is based on the author’s Ph.D. and postdoctoral research work conducted at the UNSW Sydney. The author acknowledges the School of Mechanical and Manufacturing Engineering and the School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, NSW, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shakil Ahmmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmmed, M.S., Huda, N. Effective Defect Passivation by Hydrogen Using a Laser Light Source. J. Electron. Mater. 48, 6873–6880 (2019). https://doi.org/10.1007/s11664-019-07028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07028-6

Keywords

Navigation