Skip to main content
Log in

Role of Electron Blocking Layer in Performance Improvement of Organic Diodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Charge-carrier mobilities in organic diodes based on an anthracene-containing poly(arylene-ethynylene)-alt-poly(p-phenylene-vinylene) generally known as AnE-PVstat, stacked with an electron blocking thin layer of NPB(N, N′-bis (1-naphythyl)-N, N-diphenyl-1,1′-biphenyl-4,4′-diamin) of various thicknesses are investigated through current density-voltage (J-V), capacitance-frequency (C-w), conductance-frequency (G-w) and impedance-frequency (Z-w) experiments in conventional structures of ITO/AnE-PVstat/NPB/Al. Analysis of J-V, C-w and G-w results show that current-density, capacitance and conductance of the active layer decrease with increasing NPB thickness and permit determination separately of a hole mobility of the polymer of the order of \( \sim10^{ - 4} \,{\hbox{cm}}^{2}\, {\hbox{V}}^{ - 1} \,{\hbox{s}}^{ - 1} \). This value is less than the global mobility (7 × 10−4 \( {\hbox{cm}}^{2} \,{\hbox{V}}^{ - 1} \,{\hbox{s}}^{ - 1} \)) obtained without the blocking layer, which probably includes electrons and holes mobilities and indicates that NPB absorbs the majority of electrons. Analysis of impedance spectroscopy results shows that the impedance (Z) and parallel capacitor (Cp) decrease and parallel resistance (Rp) increases with increasing NPB thickness layer. All these results clearly confirm the role of NPB as a blocking layer for the electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Boutabba, A. Rihani, N. Boutabba, L. Hassine, S. Romdhane, and H. Bouchriha, Synth. Met. 145, 129 (2004).

    Article  Google Scholar 

  2. H. Hoppe, D.A.M. Egbe, D. Mühlbacher, and N.S. Sariciftci, Mater. Chem. 14, 3462 (2004).

    Article  Google Scholar 

  3. O. Ostroverkhova, Chem. Rev. 116, 13279 (2016).

    Article  Google Scholar 

  4. S. Lattante, Electronics 3, 132 (2014).

    Article  Google Scholar 

  5. S. Ishihara, H. Hase, T. Okachi, and H. Naito, Org. Electron. Phys. Mater. Appl. 12, 1364 (2011).

    Google Scholar 

  6. N. Tore, E.A. Parlak, T.A. Tumay, P. Kavak, Ş. Sarioğlan, S. Bozar, S. Günes, C. Ulbricht, and D.A.M. Egbe, J. Nanoparticle Res. 16, 1 (2014).

    Article  Google Scholar 

  7. A. Kösemen, N. Tore, E.A. Parlak, Z. Alpaslan Kösemen, C. Ulbricht, O. Usluer, D.A.M. Egbe, Y. Yerli, and S.E. San, Sol. Energy 99, 88 (2014).

    Article  Google Scholar 

  8. L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, and R.H. Friend, Nature 434, 194 (2005).

    Article  Google Scholar 

  9. S. Alam, P. Fischer, C. Kästner, C.R. Singh, U.S. Schubert, and H. Hoppe, High- J. Mater. Res. 33, 1860 (2018).

    Article  Google Scholar 

  10. F. Tinti, F.K. Sabir, M. Gazzano, S. Righi, C. Ulbricht, Ö. Usluer, V. Pokorna, V. Cimrova, T. Yohannes, D.A.M. Egbe, and N. Camaioni, RSC Adv. 3, 6972 (2013).

    Article  Google Scholar 

  11. M. Radaoui, E. Hleli, Z. Ben Hamed, A. Ben Fredj, H. Hrichi, S. Romdhane, D.A.M. Egbe, and H. Bouchriha, Mater. Sci. Semicond. Process. 30, 285 (2015).

    Article  Google Scholar 

  12. Y. Sun, G. Li, L. Wang, Z. Huai, R. Fan, S. Huang, G. Fu, and S. Yang, Sol. Energy Mater. Sol. Cells 182, 45 (2018).

  13. E. Hleli, S. Alam, A. Saaidia, C. Kästner, S. Hoeppener, C. Ulbricht, S. Romdhane, A. Ben Fredj, D.A.M. Egbe, U.S. Schubert, H. Bouchriha, and H. Hoppe, Synth. Met. 243, 8 (2018).

    Article  Google Scholar 

  14. C. Kästner, D.A.M. Egbe, and H. Hoppe, J. Mater. Chem. A 3, 395 (2015).

    Article  Google Scholar 

  15. D.A.M. Egbe, B. Carbonnier, E. Birckner, and U.W. Grummt, Prog. Polym. Sci. 34, 1023 (2009).

    Article  Google Scholar 

  16. S.T. Zhang, Z.J. Wang, J.M. Zhao, Y.Q. Zhan, Y. Wu, Y.C. Zhou, X.M. Ding, and X.Y. Hou, Appl. Phys. Lett. 84, 2916 (2004).

    Article  Google Scholar 

  17. C. Weichsel, S. Reineke, B. Lüssem, and K. Leo, MRS Proc. 1402, mrsf11 (2012).

    Article  Google Scholar 

  18. J.K. Kim, S.H. Lee, and T. Noh, in Mol. Cryst. Liq. Cryst. (2006).

  19. Z.-Y. Xia, J.-H. Su, W.-Y. Wong, L. Wang, K.-W. Cheah, H. Tian, and C.H. Chen, J. Mater. Chem. (2010).

  20. N. Camaioni, F. Tinti, A. Degli Esposti, S. Righi, Ö. Usluer, S. Boudiba, and D.A.M. Egbe, Appl. Phys. Lett. 101, 1 (2012).

    Article  Google Scholar 

  21. T.B. Singh, N. Marjanović, G.J. Matt, S. Günes, N.S. Sariciftci, A. Montaigne Ramil, A. Andreev, H. Sitter, R. Schwödiauer, and S. Bauer, Org. Electron. 6, 105 (2005).

    Article  Google Scholar 

  22. D.A.M. Egbe, G. Adam, A. Pivrikas, A.M. Ramil, E. Birckner, V. Cimrova, H. Hoppe, and N.S. Sariciftci, J. Mater. Chem. 20, 9726 (2010).

    Article  Google Scholar 

  23. J. Dacuña and A. Salleo, Phys. Rev. B: Condens. Matter. Mater. Phys. 84, 1 (2011).

    Article  Google Scholar 

  24. Y. Nakayama, S. Machida, Y. Miyazaki, T. Nishi, Y. Noguchi, and H. Ishii, Org. Electron. Phys. Org. Electron. Phys. Mater. Appl. 13, 2850 (2012).

    Google Scholar 

  25. P. Mark and W. Helfrich, J. Appl. Phys. 33, 205 (1962).

    Article  Google Scholar 

  26. M. Bouzitoun, C. Dridi, R. Ben Chaabane, H. Ben Ouada, H. Gam, and M. Majdoub, Sci. Technol. Adv. Mater. 7, 772 (2006).

    Article  Google Scholar 

  27. F. Marai, S. Romdhane, L. Hassine, M. Majdoub, and H. Bouchriha, Synth. Met. 132, 117 (2003).

    Article  Google Scholar 

  28. R. Padma, B.P. Lakshmi, and V.R. Reddy, Superlattices Microstruct. 60, 358 (2013).

    Article  Google Scholar 

  29. F. Tinti, F.K. Sabir, M. Gazzano, S. Righi, Ö. Usluer, C. Ulbricht, T. Yohannes, D.A.M. Egbe, and N. Camaioni, Macromol. Chem. Phys. 215, 452 (2014).

    Article  Google Scholar 

  30. A. Rihani, N. Boutabba, L. Hassine, S. Romdhane, and H. Bouchriha, Synth. Met. 145, 129 (2004).

    Article  Google Scholar 

  31. C.C. Chen, B.C. Huang, M.S. Lin, Y.J. Lu, T.Y. Cho, C.H. Chang, K.C. Tien, S.H. Liu, T.H. Ke, and C.C. Wu, Org. Electron. Phys. Mater. Appl. 11, 1901 (2010).

    Google Scholar 

  32. A. Rouis, J. Davenas, I. Bonnamour, and H. BenOuada, Phys. B Condens. Matter. 474, 70 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ben Hamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hleli, E., Radaoui, M., Ben Hamed, Z. et al. Role of Electron Blocking Layer in Performance Improvement of Organic Diodes. J. Electron. Mater. 48, 2794–2800 (2019). https://doi.org/10.1007/s11664-019-06964-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06964-7

Keywords

Navigation