Skip to main content
Log in

Aqueous Chemical Synthesis and Consolidation of Size-Controlled Bi2Te3 Nanoparticles for Low-Cost and High-Performance Thermoelectric Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bi2Te3 nanoparticles (NPs) were synthesized with controlled mean diameters of 58 nm, 82 nm, and 100 nm using an aqueous chemical reduction, in which ascorbic acid was used instead of the commonly employed toxic reducing agent. In general, organic capping agents remained on the Bi2Te3 NP surfaces, which prevented the sintering of Bi2Te3 NPs and affected their thermoelectric properties. Not only the capping agent, but also water from the synthesis process, remained on the Bi2Te3 NPs even after their consolidation by spark plasma sintering. Consequently, evaporation of the water led to the collapse of sintered Bi2Te3 NPs when heated above 100°C. After the complete removal of the surface impurities and water, the sintered Bi2Te3 NPs became stable. To achieve enhanced thermoelectric properties, a high relative density of ∼ 96% was achieved in the sintered Bi2Te3 NPs without large grain growth by optimizing the sintering temperature and holding time. Subsequently, their thermoelectric properties showed that zT of the sintered Bi2Te3 NPs 100 nm in size is higher (0.41 at 390 K) than those of smaller sizes (58 nm and 82 nm). Finally, the effect of grain size, particle size and density on their thermoelectric properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater. 19, 3476 (2009).

    Article  Google Scholar 

  3. M. Saleemi, M.S. Toprak, S.H. Li, M. Johnsson, and M. Muhammed, J. Mater. Chem. 22, 725 (2012).

    Article  Google Scholar 

  4. Y. Min, J.W. Roh, H. Yang, M. Park, S.I. Kim, S. Hwang, S.M. Lee, K.H. Lee, and U. Jeong, Adv. Mater. 25, 1425 (2013).

    Article  Google Scholar 

  5. H.L. Cao, R. Venkatasubramanian, C. Liu, J. Pierce, H.R. Yang, M.Z. Hasan, Y. Wu, and Y.P. Chen, Appl. Phys. Lett. 101, 162104 (2012).

  6. N. Watanabe, J. Kawamata, and N. Toshima, Chem. Lett. 33, 1368 (2004).

    Article  Google Scholar 

  7. Y. Xu, Z. Ren, W. Ren, G. Cao, K. Deng, and Y. Zhong, Mater. Lett. 62, 4273 (2008).

    Article  Google Scholar 

  8. J.P. Fu, S.Y. Song, X.G. Zhang, F. Cao, L. Zhou, X.Y. Li, and H.J. Zhang, CrystEngComm 14, 2159 (2012).

    Article  Google Scholar 

  9. M. Salavati-Niasari, M. Bazarganipour, and F. Davar, J. Alloys Compd. 489, 530 (2010).

    Article  Google Scholar 

  10. X.B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, and J.P. Tu, Appl. Phys. Mater. 80, 1567 (2005).

    Article  Google Scholar 

  11. H.J. Kim, M.K. Han, H.Y. Kim, W. Lee, and S.J. Kim, B Kor. Chem. Soc. 33, 3977 (2012).

    Article  Google Scholar 

  12. Y.H. Zhang, G.Y. Xu, P. Ren, Z. Wang, and C.C. Ge, J. Electron. Mater. 40, 835 (2011).

    Article  Google Scholar 

  13. T. Sun, X.B. Zhao, T.J. Zhu, and J.P. Tu, Mater. Lett. 60, 2534 (2006).

    Article  Google Scholar 

  14. C. Kim, D.H. Kim, Y.S. Han, J.S. Chung, S. Park, and H. Kim, Powder Technol. 214, 463 (2011).

    Article  Google Scholar 

  15. A. Purkayastha, F. Lupo, S. Kim, T. Borca-Tasciuc, and G. Ramanath, Adv. Mater. 18, 496 (2006).

    Article  Google Scholar 

  16. L.N. Zhou, X.B. Zhang, X.B. Zhao, T.J. Zhu, and Y.Q. Qin, J. Mater. Sci. 44, 3528 (2009).

    Article  Google Scholar 

  17. W. Wang, J. Goebl, L. He, S. Aloni, Y. Hu, L. Zhen, and Y. Yin, J. Am. Chem. Soc. 132, 17316 (2010).

    Article  Google Scholar 

  18. X. Ji, B. Zhang, T.M. Tritt, J.W. Kolis, and A. Kumbhar, J. Electron. Mater. 36, 721 (2007).

    Article  Google Scholar 

  19. U. Pelz, K. Kaspar, S. Schmidt, M. Dold, M. Jagle, A. Pfaadt, and H. Hillebrecht, J. Electron. Mater. 41, 1851 (2012).

    Article  Google Scholar 

  20. P. Dharmaiah, C.H. Lee, B. Madavali, and S.J. Hong, Arch. Metall. Mater. 62, 1005 (2017).

    Article  Google Scholar 

  21. S. Pradhan, R. Das, R. Bhar, R. Bandyopadhyay, and P. Pramanik, J. Nanoparticle Res. 19, 69 (2017).

  22. V.R. Akshay, M.V. Suneesh, and M. Vasundhara, Inorg. Chem. 56, 6264 (2017).

    Article  Google Scholar 

  23. N. Mntungwa, P.V.S.R. Rajasekhar, K. Ramasamy, and N. Revaprasadu, Superlattice Microst 69, 226 (2014).

    Article  Google Scholar 

  24. F. Wu, H.Z. Song, F. Gao, W.Y. Shi, J.F. Jia, and X. Hu, J. Electron. Mater. 42, 1140 (2013).

    Article  Google Scholar 

  25. Y. Li, Q. Zhao, Y.G. Wang, and K. Bi, Mater. Sci. Semicond. Proc. 14, 219 (2011).

    Article  Google Scholar 

  26. Q. Zhao and Y.G. Wang, J. Alloys Compd. 497, 57 (2010).

    Article  Google Scholar 

  27. W. Guo, J.M. Ma, and W.J. Zheng, J. Alloys Compd. 659, 170 (2016).

    Article  Google Scholar 

  28. R.C. Jin, J.S. Liu, and G.H. Li, Cryst. Res. Technol. 49, 460 (2014).

    Article  Google Scholar 

  29. P. Srivastava and K. Singh, J. Therm. Anal. Calorim. 110, 523 (2012).

    Article  Google Scholar 

  30. H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, and M. Nil, Renew. Sust. Energy Rev. 82, 4159 (2018).

    Article  Google Scholar 

  31. S. Yokoyama, K. Sato, M. Muramatsu, T. Yamasuge, T. Itoh, K. Motomiya, H. Takahashi, and K. Tohji, Adv. Powder Technol. 26, 789 (2015).

    Article  Google Scholar 

  32. M.E. Anderson, S.S.N. Bharadwaja, and R.E. Schaak, J. Mater. Chem. 20, 8362 (2010).

    Article  Google Scholar 

  33. M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, and H. Tsukamoto, J. Appl. Phys. 104, 084302 (2008).

  34. M.R. Dirmyer, J. Martin, G.S. Nolas, A. Sen, and J.V. Badding, Small 5, 933 (2009).

    Article  Google Scholar 

  35. M. Takashiri, S. Tanaka, H. Hagino, and K. Miyazaki, J. Appl. Phys. 112, 084315 (2012).

  36. Z.G. Zeng, P.H. Yang, and Z.Y. Hu, Appl. Surf. Sci. 268, 472 (2013).

    Article  Google Scholar 

  37. Q.M. Liu, D.B. Zhou, K. Nishio, R. Ichino, and M. Okido, Mater. Trans. 51, 1386 (2010).

    Article  Google Scholar 

  38. R. Drissi-Daoudi, A. Irhzo, and A. Darchen, J. Appl. Electrochem. 33, 339 (2003).

    Article  Google Scholar 

  39. V.J.S.S.P.J. Reddy, 28th International Symposium on Shock Waves (2012).

  40. J. Xiong, Y. Wang, Q.J. Xue, and X.D. Wu, Green Chem. 13, 900 (2011).

    Article  Google Scholar 

  41. S.H. Xuan, L.Y. Hao, W.Q. Jiang, X.L. Gong, Y.A. Hu, and Z.Y. Chen, J. Magn. Magn. Mater. 308, 210 (2007).

    Article  Google Scholar 

  42. J.C. Deutsch, J. Chromatogr. A 881, 299 (2000).

    Article  Google Scholar 

  43. S. Yokoyama, K. Motomiya, H. Takahashi, and K. Tohji, J. Mater. Chem. C 4, 7494 (2016).

    Article  Google Scholar 

  44. S. Lerdkanchanaporn, D. Dollimore, and K.S. Alexander, J. Therm. Anal. 49, 887 (1997).

    Article  Google Scholar 

  45. D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall, J. Phys. Chem. Ref. Data 11, 1 (1982).

    Article  Google Scholar 

  46. E.M. Kosower, J. Am. Chem. Soc. 80, 3253 (1958).

    Article  Google Scholar 

  47. A. Seidell and W.F. Linke, Solubilities of inorganic and metal organic compounds; a compilation of quantitative solubility data from the periodical literature, 3rd ed. (New York: D. Van Nostrand Company, Inc., 1940).

    Google Scholar 

  48. A. Shalmashi and A. Eliassi, J. Chem. Eng. Data 53, 1332 (2008).

    Article  Google Scholar 

  49. J.S. Son, M.K. Choi, M.K. Han, K. Park, J.Y. Kim, S.J. Lim, M. Oh, Y. Kuk, C. Park, S.J. Kim, and T. Hyeon, Nano Lett. 12, 640 (2012).

    Article  Google Scholar 

  50. L. Han, S.H. Spangsdorf, N.V. Nong, L.T. Hung, Y.B. Zhang, H.N. Pham, Y.Z. Chen, A. Roch, L. Stepien, and N. Pryds, Rsc. Adv. 6, 59565 (2016).

    Article  Google Scholar 

  51. S. Diouf and A. Molinari, Powder Technol. 221, 220 (2012).

    Article  Google Scholar 

  52. N.J. Shaw, Powder Metall. Int. 21, 16 (1989).

    Google Scholar 

  53. R. Chaim and M. Margulis, Mater. Sci. Eng. Struct. 407, 180 (2005).

    Article  Google Scholar 

  54. S.S. Lim, J.H. Kim, B. Kwon, S.K. Kim, H.H. Park, K.S. Lee, J.M. Baik, W.J. Choi, D.I. Kim, D.B. Hyun, J.S. Kim, and S.H. Baek, J. Alloys Compd. 678, 396 (2016).

    Article  Google Scholar 

  55. A. Soni, Y.Y. Zhao, L.G. Yu, M.K.K. Aik, M.S. Dresselhaus, and Q.H. Xiong, Nano Lett. 12, 1203 (2012).

    Article  Google Scholar 

  56. Q.H. Zhang, X. Ai, L.J. Wang, Y.X. Chang, W. Luo, W. Jiang, and L.D. Chen, Adv. Func. Mater. 25, 966 (2015).

    Article  Google Scholar 

  57. D.L. Medlin and G.J. Snyder, Curr. Opin. Colloid Interface Sci. 14, 226 (2009).

    Article  Google Scholar 

  58. J.P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 49, 1237 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Yokoyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamoto, T., Yokoyama, S., Takamatsu, T. et al. Aqueous Chemical Synthesis and Consolidation of Size-Controlled Bi2Te3 Nanoparticles for Low-Cost and High-Performance Thermoelectric Materials. J. Electron. Mater. 48, 2700–2711 (2019). https://doi.org/10.1007/s11664-019-06935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06935-y

Keywords

Navigation