Skip to main content
Log in

Investigation of Effects of Diameter, Doping and Vacancy Defects on the Band Structure and Transport Properties of Silicon Nanowires for Potential Applications in Field-Effect Transistors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silicon nanowires (SiNWs) with unique band structure and transport properties are considered potential candidates for future nanoelectronics devices such as field-effect transistors (FETs). We present a model of a SiNW-FET comprising \(\langle100\rangle\) silicon atomic wires with a cylindrical-shaped metallic gate wrapped around the wires. For this purpose, we report on the energy band structure and density of states of SiNWs of diameters 5.93 Å, 9.71 Å and 13.55 Å with \(\langle100\rangle\) cleavage orientation by employing generalized gradient approximation and meta-generalized gradient approximation as well as the semi-empirical extended-Huckel model. Moreover, the transmission and transport properties of doped and undoped SiNWs of diameter 5.93 Å with and without vacancy defects are explored using a non-equilibrium green function approach with self-consistent calculations. The corresponding IV characteristics of the proposed cylindrical-shaped metallic-gate SiNW-FET under a specific gate voltage are presented. Our results show that the undoped SiNWs with vacancy defects on the surface are more suitable candidates for nanoelectronic device applications such as FETs in contrast to their counterparts with vacancies at the center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. San Paulo, N. Arellano, J.A. Plaza, R. He, C. Carraro, R. Maboudian, R.T. Howe, J. Bokor, and P. Yang, Nano Lett. 1100, 7 (2007).

    Google Scholar 

  2. ITRS, The International Technology Roadmap for Semiconductors (ITRS). 2016.2.

  3. H.N. Khan, D.A. Hounshell, and E.R. Fuchs, Nat. Electron. 1, 14 (2018).

    Article  Google Scholar 

  4. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, Nat. Commun. 5, 3132 (2014).

    Article  Google Scholar 

  5. A. Sattar, R.J. Amjad, S. Yasmeen, H. Javed, H. Latif, H. Mahmood, A. Iqbal, A. Usman, M.N. Akhtar, and S.N. Khan, Phys. E Low Dimens. Syst. Nanostruct. 79, 8 (2016).

    Article  Google Scholar 

  6. R.-P. Wang, G.-W. Zhou, Y.-L. Liu, S.-H. Pan, H.-Z. Zhang, D.-P. Yu, and Z. Zhang, Phys. Rev. B. 61, 16827 (2000).

    Article  Google Scholar 

  7. A.I. Hochbaum, R. Fan, R. He, and P. Yang, Nano Lett. 5, 457 (2005).

    Article  Google Scholar 

  8. B. Marsen and K. Sattler, Phys. Rev. B. 60, 11593 (1999).

    Article  Google Scholar 

  9. N. Wang, Y. Tang, Y. Zhang, C. Lee, I. Bello, and S. Lee, Chem. Phys. Lett. 299, 237 (1999).

    Article  Google Scholar 

  10. J.M. Méndez-Reyes, B.M. Monroy, M. Bizarro, F. Güell, A. Martínez, and E. Ramos, Phys. Chem. Chem. Phys. 17, 21525 (2015).

    Article  Google Scholar 

  11. M. Nolan, S. O’Callaghan, G. Fagas, J.C. Greer, and T. Frauenheim, Nano Lett. 7, 34 (2007).

    Article  Google Scholar 

  12. Y.M. Brovman, J.P. Small, Y. Hu, Y. Fang, C.M. Lieber, and P. Kim, J. Appl. Phys. 119, 234304 (2016).

    Article  Google Scholar 

  13. P. Yang, A. Majumdar, A.I. Hochbaum, R. Chen, and R.D. Delgado, (Google Patents: 2015).

  14. T. Markussen, A.-P. Jauho, and M. Brandbyge, Phys. Rev. 79, 035415 (2009).

    Article  Google Scholar 

  15. M.H. Moaiyeri, A. Rahi, F. Sharifi, and K. Navi, J. Appl. Res. Technol. 15, 233 (2017).

    Article  Google Scholar 

  16. M.H. Moaiyeri, M. Nasiri, and N. Khastoo, JESTECH 19, 271 (2016).

    Google Scholar 

  17. A.M. Ionescu, In 2017 17th International Workshop on Junction Technology (IWJT), (IEEE: 2017), pp 1–6.

  18. X.Y. Kong and Z.L. Wang, Nano Lett. 3, 1625 (2003).

    Article  Google Scholar 

  19. W.H. Lim, A. Hamzah, M.T. Ahmadi, and R. Ismail, Phys. E Low Dimens. Syst. Nanostruct. 102, 33 (2018).

    Article  Google Scholar 

  20. S.W. Eaton, M. Lai, N.A. Gibson, A.B. Wong, L. Dou, J. Ma, L.-W. Wang, S.R. Leone, and P. Yang, PNAS 113, 1993 (2016).

    Article  Google Scholar 

  21. Y. Li, S. Wang, Q. Wang, and M. Xing, Carbon 129, 504 (2018).

    Article  Google Scholar 

  22. S. Kawai, A. Benassi, E. Gnecco, H. Söde, R. Pawlak, X. Feng, K. Müllen, D. Passerone, C.A. Pignedoli, and P. Ruffieux, Science 351, 957 (2016).

    Article  Google Scholar 

  23. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z.L. Wang, Nano Lett. 6, 2768 (2006).

    Article  Google Scholar 

  24. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 7260 (1998).

    Article  Google Scholar 

  25. Q. A. S. Atomistix ToolKit version 2016.01.

  26. W. Lu, V. Meunier, and J. Bernholc, Phys. Rev. Lett. 95, 206805 (2005).

    Article  Google Scholar 

  27. D. Kienle, J.I. Cerda, and A.W. Ghosh, J. Appl. Phys. 100, 043714 (2006).

    Article  Google Scholar 

  28. T.-L. Chan, C.V. Ciobanu, F.-C. Chuang, N. Lu, C.-Z. Wang, and K.-M. Ho, Nano Lett. 6, 277 (2006).

    Article  Google Scholar 

  29. G.-Y. Huang, C.-Y. Wang, and J.-T. Wang, Solid State Commun. 149, 199 (2009).

    Article  Google Scholar 

  30. D.C. Langreth and M. Mehl, Phys. Rev. B 28, 1809 (1983).

    Article  Google Scholar 

  31. Y. Zhao and D.G. Truhlar, Acc. Chem. Res. 41, 157 (2008).

    Article  Google Scholar 

  32. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002).

    Article  Google Scholar 

  33. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  34. K. Stokbro, D.E. Petersen, S. Smidstrup, A. Blom, M. Ipsen, and K. Kaasbjerg, Phys. Rev. B 82, 075420 (2010).

    Article  Google Scholar 

  35. K. Stokbro, J. Taylor, M. Brandbyge, and H. Guo, In Introducing Molecular Electronics, (Springer: 2006), pp 117– 151.

Download references

Acknowledgment

The authors would like to acknowledge Higher Education commission Pakistan for providing research Grant No. 5336/Federal/NRPU/R&D/HEC/2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Irfan or Abdul Sattar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Sattar, A., Iqbal, A. et al. Investigation of Effects of Diameter, Doping and Vacancy Defects on the Band Structure and Transport Properties of Silicon Nanowires for Potential Applications in Field-Effect Transistors. J. Electron. Mater. 48, 2761–2769 (2019). https://doi.org/10.1007/s11664-019-06933-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06933-0

Keywords

Navigation