Skip to main content
Log in

Preparation of Porous Carbon Material Derived from Cellulose with Added Melamine Sulfate and Electrochemical Performance as EDLC Electrode

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Activated carbon derived from cellulose with added melamine sulfate, which is known as one of the chemicals having a flame-retardant effect on the cellulose, was produced in order to dope dual hetero elements, such as nitrogen and sulfur, and was used to improve the yields of the carbonization process and carbon dioxide (CO2) activation process. The addition of melamine sulfate resulted in suppression of the BET specific surface area. The Brunauer–Emmett–Teller (BET) specific surface area for the CO2-activated sample with 30 wt.%-added melamine sulfate was 578 m2 g−1. The existence of nitrogen atoms was confirmed in the CO2-activated sample with the added melamine sulfate. However, no peak assigned to the sulfur atom appeared in the x-ray photoelectron spectroscopy spectrum for the sample with the 30 wt.%-added melamine sulfate. In spite of the lower specific surface area of the samples containing the added melamine sulfate, the capacitance values of the carbon material derived from the cellulose with added melamine sulfate were higher than those of the carbon material derived only from cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, and M. Sanchez-Polo, J. Environ. Manag. 85, 833 (2007).

    Article  Google Scholar 

  2. T. Tsubota, D. Nagata, N. Murakami, and T. Ohno, J. Appl. Polym. Sci. 131, 40950 (2014).

    Article  Google Scholar 

  3. T. Tsubota, K. Takenaka, N. Murakami, and T. Ohno, J. Power Sources 196, 10455 (2011).

    Article  Google Scholar 

  4. T. Tsubota, M. Morita, N. Murakami, and T. Ohno, J. Power Sources 267, 635 (2014).

    Article  Google Scholar 

  5. L. Sun, H. Zhou, Y. Li, F. Yu, C. Zhang, X. Liu, and Y. Zhou, Mater. Lett. 189, 107 (2017).

    Article  Google Scholar 

  6. W. Chen, J. Shi, T. Zhu, Q. Wang, J. Qiao, and J. Zhang, Electrochim. Acta 177, 327 (2015).

    Article  Google Scholar 

  7. A.G. Kannan, A. Samuthirapandian, and D.-W. Kim, J. Power Sources 337, 65 (2017).

    Article  Google Scholar 

  8. T. Wei, X. Wei, L. Yang, H. Xiao, Y. Gao, and H. Li, J. Power Sources 331, 373 (2016).

    Article  Google Scholar 

  9. J. Li, G. Zhang, C. Fu, L. Deng, R. Sun, and C.-P. Wong, J. Power Sources 345, 146 (2017).

    Article  Google Scholar 

  10. H.T. Yi, Y.Q. Zhu, X.Y. Chen, and Z.J. Zhang, J. Alloys Compd. 649, 851 (2015).

    Article  Google Scholar 

  11. Y. Li, G. Wang, T. Wei, Z. Fan, and P. Yan, Nano Energy 19, 165 (2016).

    Article  Google Scholar 

  12. T. Akhter, M.M. Islam, S.N. Faisal, E. Haque, A.I. Minett, H.K. Liu, K. Konstantinov, and S.X. Dou, ACS Appl. Mater. Interfaces 8, 2078 (2016).

    Article  Google Scholar 

  13. S. Xiang, X. Yang, X. Lin, C. Chang, H. Que, and M. Li, J. Solid State Electron. 21, 1457 (2017).

    Article  Google Scholar 

  14. C. Chen, W. Fan, Q. Zhang, X. Fu, and H. Wu, Ionics 21, 3233 (2015).

    Article  Google Scholar 

  15. J. Li, G. Zan, and Q. Wu, RSC Adv. 6, 57464 (2016).

    Article  Google Scholar 

  16. T. Tsubota, T. Yamaguchi, C. Wang, Y. Miyauchi, N. Murakami, and T. Ohno, J. Power Sources 227, 24 (2013).

    Article  Google Scholar 

  17. A. Granzow, Acc. Chem. Res. 11, 177 (1978).

    Article  Google Scholar 

  18. H. Konno, T. Ito, M. Ushiro, K. Fushimi, and K. Azumi, J. Power Sources 195, 1739 (2010).

    Article  Google Scholar 

  19. H. Pan, C.K. Poh, Y.P. Feng, and J. Lin, Chem. Mater. 19, 6120 (2007).

    Article  Google Scholar 

  20. H. Pan, J. Li, and Y.P. Feng, Nanoscale Res. Lett. 5, 654 (2010).

    Article  Google Scholar 

  21. M. Kodama, J. Yamashita, Y. Soneda, H. Hatori, and K. Kamegawa, Carbon 45, 1105 (2007).

    Article  Google Scholar 

  22. M. Kawaguchi, A. Itoh, S. Yagi, and H. Oda, J. Power Sources 172, 481 (2007).

    Article  Google Scholar 

  23. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, and M. Chesneau, J. Power Sources 101, 109 (2001).

    Article  Google Scholar 

  24. D. Hulicova, J. Yamashita, Y. Soneda, H. Hatori, and M. Kodama, Chem. Mater. 17, 1241 (2005).

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI Grant Number JP 17K06031. The authors are grateful for JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Tsubota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsubota, T., Maguchi, Y., Ishimoto, K. et al. Preparation of Porous Carbon Material Derived from Cellulose with Added Melamine Sulfate and Electrochemical Performance as EDLC Electrode. J. Electron. Mater. 48, 879–886 (2019). https://doi.org/10.1007/s11664-018-6799-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6799-z

Keywords

Navigation