Skip to main content
Log in

Temperature Stable Microwave Dielectric Ceramic CoTiNb2O8-Zn1.01Nb2O6 with Ultra-Low Dielectric Loss

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(1 − x)CoTiNb2O8-xZn1.01Nb2O6 ceramics were prepared via a conventional solid-state reaction route to obtain near-zero τf. The effects of Zn1.01Nb2O6 content on the phase, microstructure and microwave dielectric properties of CoTiNb2O8 ceramics were investigated. X-ray diffraction (XRD) revealed a mixture of tetragonal rutile and orthorhombic columbite phases co-existed over the entire range. Both the sintering behavior and quality factor (Q × f) of matrix ceramics were enhanced effectively by the addition of Zn1.01Nb2O6. On the other hand, the relative permittivity (εr) decreased linearly from 41.6 to 24.8. The temperature coefficient of resonant frequency (τf) could be controlled by adjusting the x value. When \( x = 0.8 \), the composite ceramic sintered at 1200°C possessed optimum microwave dielectric properties with \( \varepsilon_{r} \sim 27.8 \), \( Q \times f \sim 94{,}700\;{\hbox{GHz}} \), and \( \tau_{f} \sim 0 \) ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Z. Hao, D. Zhou, W.B. Li, and L.X. Pang, J. Electron. Mater. 46, 6241 (2017).

    Article  Google Scholar 

  2. Y.C. Liou and Y.C. Wu, J. Electron. Mater. 46, 2387 (2017).

    Article  Google Scholar 

  3. W.X. Wen, C.C. Li, Y.H. Sun, Y. Tang, and L. Fang, J. Electron. Mater. 47, 1003 (2018).

    Article  Google Scholar 

  4. A. Templeton, X.R. Wang, S.J. Penn, S.J. Webb, L.F. Cohen, and N.M. Alford, J. Am. Ceram. Soc. 83, 95 (2000).

    Article  Google Scholar 

  5. L.X. Pang, H. Wang, D. Zhou, and X. Yao, J. Electroceram. 23, 13 (2009).

    Article  Google Scholar 

  6. L.X. Pang, H. Wang, D. Zhou, and X. Yao, J. Am. Ceram. Soc. 91, 2947 (2008).

    Article  Google Scholar 

  7. E.S. Kim and D.H. Kang, Ceram. Int. 34, 883 (2008).

    Article  Google Scholar 

  8. D. Zhou, D. Guo, W.B. Li, L.X. Pang, X. Yao, D.W. Wang, and I.M. Reaney, J. Mater. Chem. C 4, 5357 (2016).

    Article  Google Scholar 

  9. D. Zhou, L.X. Pang, D.W. Wang, C. Li, B.B. Jin, and I.M. Reaney, J. Mater. Chem. C 5, 10094 (2017).

    Article  Google Scholar 

  10. A. Baumgarte and R. Blachnik, J. Alloys Compd. 215, 117 (1994).

    Article  Google Scholar 

  11. C.F. Tseng, J. Eur. Ceram. Soc. 34, 3641 (2014).

    Article  Google Scholar 

  12. Y. Zhang, Y.C. Zhang, and M.Q. Xiang, Ceram. Int. 42, 3542 (2016).

    Article  Google Scholar 

  13. R.C. Pullar, J. Am. Ceram. Soc. 92, 563 (2009).

    Article  Google Scholar 

  14. Y.C. Liou and Y.L. Sung, Ceram. Int. 34, 371 (2008).

    Article  Google Scholar 

  15. H.J. Lee, I.T. Kim, and K.S. Hong, Jpn. J. Appl. Phys. 36, L1318 (1997).

    Article  Google Scholar 

  16. A. Belous, O. Ovchar, B. Jancar, and J. Bezjak, J. Eur. Ceram. Soc. 27, 2933 (2007).

    Article  Google Scholar 

  17. Y. Zhang, Y.C. Zhang, and M.Q. Xiang, Mater. Lett. 178, 175 (2016).

    Article  Google Scholar 

  18. J. Zhang and Z.X. Yue, Ceram. Int. 43, S317 (2017).

    Article  Google Scholar 

  19. B.W. Hakki and P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402 (1960).

    Article  Google Scholar 

  20. W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476 (1970).

    Article  Google Scholar 

  21. Y. Kobayashiy and M. Katoh, IEEE Trans. Microw. Theory Tech. 33, 586 (1985).

    Article  Google Scholar 

  22. P. Sarah and S. Suryanarayana, Bull. Mater. Sci. 26, 745 (2003).

    Article  Google Scholar 

  23. Y.C. Chen and R.Y. Syu, J. Mater. Sci.: Mater. Electron. 27, 6979 (2016).

    Google Scholar 

  24. W.S. Kim, T.H. Kim, and E.S. Kim, J. Jpn. Appl. Phys. 37, 5367 (1998).

    Article  Google Scholar 

  25. Y.C. Chen and Y.W. Zeng, J. Alloys Compd. 481, 369 (2009).

    Article  Google Scholar 

  26. X.P. Lu, Y. Zheng, Z.W. Dong, and Q. Huang, Mater. Lett. 131, 1 (2014).

    Article  Google Scholar 

  27. J.W. Choi, S. Kucheiko, S.J. Yoon, J. Jai, and K.H. Yoon, J. Am. Ceram. Soc. 84, 2570 (2001).

    Article  Google Scholar 

  28. L.A. Khalam, S. Thomas, and M.T. Sebastian, J. Am. Ceram. Soc. 90, 2476 (2007).

    Article  Google Scholar 

  29. K.P. Surendran and M.T. Sebastian, J. Mater. Res. 20, 2919 (2005).

    Article  Google Scholar 

  30. C.F. Tseng and C.L. Huang, Mater. Res. Bull. 42, 9 (2006).

    Article  Google Scholar 

  31. C.F. Yang, C.C. Chan, C.M. Cheng, and Y.C. Chen, J. Eur. Ceram. Soc. 25, 2849 (2005).

    Article  Google Scholar 

  32. J.W. Choi, J.Y. Ha, S.J. Yoon, H.J. Kim, and K.H. Yoon, J. Eur. Ceram. Soc. 23, 2507 (2003).

    Article  Google Scholar 

  33. C.H. Su, Y.D. Ho, and C.L. Huang, J. Alloys Compd. 607, 67 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Scientific Research Fund of Xihua University (Grant No. Z17106) and Xihua University Talents Supporting Program (Grant No. 21030028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ding, S., You, L. et al. Temperature Stable Microwave Dielectric Ceramic CoTiNb2O8-Zn1.01Nb2O6 with Ultra-Low Dielectric Loss. J. Electron. Mater. 48, 867–872 (2019). https://doi.org/10.1007/s11664-018-6795-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6795-3

Keywords

Navigation