Skip to main content
Log in

Effect of Silver Electrode Annealing Temperature on Electrical Properties of Sodium Potassium Niobate Based Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Annealing of the electrodes before poling is an inevitable step in the processing of piezoceramics and, hence, the optimization of annealing temperature is necessary to obtain higher properties. However, for sodium potassium niobate based lead free piezoceramics, the data available is very puzzling, and the annealing temperature has not been standardized. In this study, the optimum ceramic-electrode interface has been designed by modulating the electrode annealing temperature to attain the best possible properties. The annealing temperature, ranging from 150°C to 750°C, has been investigated using piezoelectric properties, resistivity, dielectric properties, adhesion strength and interface of electrode-ceramic boundaries as parameters. The measured properties demonstrated significant dependence on the characteristics of the ceramic-electrode interface. For lead free piezoceramic, optimum properties are achieved at the annealing temperature of 450°C which has been attributed to the well- bonded homogeneous ceramic-electrode interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).

    Article  Google Scholar 

  2. N.N. Wathore, C.M. Lonkar, and S. Premkumar, Trans. Powder. Metall. Assoc. India 43, 68 (2017).

    Google Scholar 

  3. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (New York: Academic Press, 1971).

    Google Scholar 

  4. W. Wersing, M. Schnöller, and H. Wahl, Ferroelectrics 68, 145 (1986).

    Article  Google Scholar 

  5. A.C. Caballero, E. Nieto, P. Duran, C. Moure, M. Kosec, Z. Samardzija, and G. Drazic, J. Mater. Sci. 32, 3257 (1997).

    Article  Google Scholar 

  6. S.F. Wang, J.P. Dougherty, W. Huebner, and J.G. Pepin, J. Am. Ceram. Soc. 77, 3051 (1994).

    Article  Google Scholar 

  7. M. Allahverdi, S. Danforth, M. Jafari, and A. Safari, J. Eur. Ceram. Soc. 21, 1485 (2001).

    Article  Google Scholar 

  8. J. Kato, Y. Yokotani, H. Kagata, and H. Niwa, Jpn. J. Appl. Phys. 26, 90 (1987).

    Article  Google Scholar 

  9. L. Chen, X. Wang, B. Qiao, X. Deng, Z. Gui, and L. Li, J. Am. Ceram. Soc. 89, 3734 (2006).

    Article  Google Scholar 

  10. I. Burn, U. S. Patent 3987347 (1976)

  11. Q. Li, M.H. Zhang, Z.X. Zhu, K. Wang, J.S. Zhou, F.Z. Yao, and J.F. Li, J. Mater. Chem. C. 5, 549 (2017). https://doi.org/10.1039/C6TC04723H.

    Article  Google Scholar 

  12. A. Kumar, V.V. Bhanuprasad, K.C.J. Raju, and A.R. James, Eur. Phys. J. B 287, 1 (2015).

    Google Scholar 

  13. E.R. Neagu, Indian J. Pure Appl. Phys. 46, 809 (2008).

    Google Scholar 

  14. A. Lian and W. Zhong, I.E.E.E. Trans. Electr. Insul. 25, 638 (1990).

    Article  Google Scholar 

  15. H.C. Ling, J. Am. Ceram. Soc. 72, 770 (1989).

    Article  Google Scholar 

  16. H. Kim and H.H. Park, J. Ceram. Soc. Jpn. 118, 1071 (2010).

    Article  Google Scholar 

  17. P.K. Panda, J. Mater. Sci. 44, 5049 (2009).

    Article  Google Scholar 

  18. J. Yoo, D. Oh, Y. Jeong, J. Hong, and M. Jung, Mater. Lett. 58, 3831 (2004).

    Article  Google Scholar 

  19. Y. Saito and H. Takao, Ferroelectrics 338, 17 (2006).

    Article  Google Scholar 

  20. P. Kumari, R. Rai, S. Sharma, M. Shandilya, and A. Tiwari, J. Mater. Lett. 6, 453 (2015).

    Article  Google Scholar 

  21. W. Ge, Y. Ren, J. Zhang, C.P. Devreugd, J. Li, and D. Viehland, J. Appl. Phys. 111, 103503 (2012).

    Article  Google Scholar 

  22. R.C. Chang, S.Y. Chu, Y.P. Wong, Y.F. Lin, and C.S. Hong, Sens. Actuators, A 136, 267 (2007).

    Article  Google Scholar 

  23. Y. Wang, D. Damjanovic, N. Klein, E. Hollenstein, and N. Setter, J. Am. Ceram. Soc. 90, 3485 (2007).

    Article  Google Scholar 

  24. Y. Gong, G. Yang, X. Li, L. Gong, L. Li, J. Peng, and X. Zheng, J. Mater. Sci.: Mater. Electron. 23, 1910 (2012).

    Google Scholar 

  25. L. Wu, J.L. Zhang, C.L. Wang, and J.C. Li, J. Appl. Phys. 103, 084116 (2008).

    Article  Google Scholar 

  26. I. Smeltere, M. Antonova, A. Kalvane, O. Grigs, and M. Livinsh, Mater. Sci. 17, 62 (2011).

    Google Scholar 

  27. X. Cheng, J. Wu, X. Wang, B. Zhang, X. Lou, X. Wang, D. Xiao, and J. Zhu, A.C.S. Appl. Mater. Interfaces 5, 10409 (2013).

    Article  Google Scholar 

  28. B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, and X. Lou, A.C.S. Appl. Mater. Interfaces 5, 7718 (2013).

    Article  Google Scholar 

  29. F.R. Marcos, P. Ochoa, and J.F. Fernandez, J. Eur. Ceram. Soc. 27, 4125 (2007).

    Article  Google Scholar 

  30. B. Zhang, J. Wu, X. Wang, X. Cheng, J. Zhu, and D. Xiao, Curr. Appl. Phys. 13, 1647 (2013).

    Article  Google Scholar 

  31. S. Zhang, R. Xia, T.R. Shrout, G. Zang, and J. Wang, J. Appl. Phys. 100, 104108 (2006).

    Article  Google Scholar 

  32. E.A. Gurdal, S.O. Ural, H.Y. Park, S. Nahm, and K. Uchino, Sens. Actuators, A 200, 44 (2013).

    Article  Google Scholar 

  33. S.L. Yang, C.S. Hong, C.C. Tsai, Y.C. Liou, and S.Y. Chu, J. Eur. Ceram. Soc. 32, 1643 (2012).

    Article  Google Scholar 

  34. Z. Yang, Y. Chang, B. Liu, and L. Wei, Mater. Sci. Eng., A 432, 292 (2006).

    Article  Google Scholar 

  35. Y. Guo, K. Kakimoto, and H. Ohsato, Mater. Lett. 59, 241 (2005).

    Article  Google Scholar 

  36. Z.Y. Shen, Y. Xu, and J.F. Li, Ceram. Int. 38S, 331 (2012).

    Article  Google Scholar 

  37. J.J. Zhou, J.F. Li, and X.W. Zhang, J. Mater. Sci. 47, 1767 (2012).

    Article  Google Scholar 

  38. T.A. Skidmore, T.P. Comyn, and S.J. Milne, J. Mater. Sci. 47, 1767 (2012).

    Article  Google Scholar 

  39. M.S. Kim, D.S. Lee, E.C. Park, S.J. Jeong, and J.S. Song, J. Eur. Ceram. Soc. 27, 4121 (2007).

    Article  Google Scholar 

  40. M.V. Slinkina, G.I. Dontsov, and V.M. Zhukovsky, J. Mater. Sci. 28, 5189 (1993).

    Article  Google Scholar 

  41. Y.A. Genenko, J. Glaum, M.J. Hoffman, and K. Albe, J. Mater. Sci. Engg. B 192, 52 (2015).

    Article  Google Scholar 

  42. E.B. Barabanova, O.V. Malyshkna, and S.I. Pugachev, Ferroelectrics 497, 74 (2016).

    Article  Google Scholar 

  43. A. Dahiya and O.P. Thakur, Int. J. Eng. Innov. Technol. 3, 176 (2014).

    Google Scholar 

  44. D. Agustinawati, N.L. Isnaini, and S. Suasmoro, AIP Conf. Proc. 1788, 030129 (2017).

    Article  Google Scholar 

  45. Y. Zhang, D.C. Lupascu, N. Balke, and J. Rodel, J. Phys. IV 128, 97 (2005).

    Google Scholar 

  46. M. Dawber, K.M. Rabe, and J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005).

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. R. K. Pandey, High Energy Materials Research Laboratory (HEMRL), Pune for extending the TG/DTA facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupender Rawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wathore, N.N., Rawal, B., Dixit, P. et al. Effect of Silver Electrode Annealing Temperature on Electrical Properties of Sodium Potassium Niobate Based Ceramics. J. Electron. Mater. 48, 845–852 (2019). https://doi.org/10.1007/s11664-018-6787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6787-3

Keywords

Navigation