Skip to main content
Log in

Direct Comparison of Thermoelectric Devices Using Impedance Spectroscopy

  • Topical Collection: International Conference on Thermoelectrics 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric properties of devices based on bismuth telluride, skutterudite, and calcium manganese oxide have been investigated and compared using impedance spectroscopy at 23°C. Prior to the detailed analysis, Kramers–Kronig transformation tests were performed to examine the validity of the obtained impedance spectra. All the spectra were Kramers–Kronig transformable, and were interpreted using equivalent circuit fitting. The three key parameters (Seebeck coefficient, thermal conductivity, and electrical conductivity) and dimensionless figure of merit of bismuth telluride and skutterudite-based devices were successfully extracted from their respective impedance spectra. However, the thermal conductivity of the calcium manganese oxide-based device was overestimated, while the Seebeck coefficient and electrical conductivity values were reasonably accurate owing to their negligible thermoelectric effect at 23°C. We further proposed that the thermoelectric capacitance obtained from the impedance spectra could be a quantitative measure of the “propensity” of thermoelectric devices to generate thermoelectric power under an external temperature gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Gingerich and M.S. Mauter, Environ. Sci. Technol. 49, 8297 (2015).

    Article  Google Scholar 

  2. H. Wang, R. McCarty, J.R. Salvador, A. Yamamoto, and J. König, J. Electron. Mater. 43, 2274 (2014).

    Article  Google Scholar 

  3. G. Nie, S. Suzuki, T. Tomida, A. Sumiyoshi, T. Ochi, K. Mukaiyama, M. Kikuchi, J.Q. Guo, A. Yamamoto, and H. Obara, J. Electron. Mater. 46, 2640 (2017).

    Article  Google Scholar 

  4. D. Zhao, C. Tian, S. Tang, Y. Liu, L. Jiang, and L. Chen, Mater. Sci. Semicond. Process. 13, 221 (2010).

    Article  Google Scholar 

  5. J.Q. Guo, H.Y. Geng, T. Ochi, S. Suzuki, M. Kikuchi, Y. Yamaguchi, and S. Ito, J. Electron. Mater. 41, 1036 (2012).

    Article  Google Scholar 

  6. J.R. Salvador, J.Y. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D. Koenig, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, and A.A. Wereszczak, Phys. Chem. Chem. Phys. 16, 12510 (2014).

    Article  Google Scholar 

  7. S.H. Park, Y. Jin, J. Cha, K. Hong, Y. Kim, H. Yoon, C.-Y. Yoo, and I. Chung, ACS Appl. Energy Mater. 1, 1603 (2018).

    Google Scholar 

  8. X. Hu, P. Jood, M. Ohta, M. Kunii, K. Nagase, H. Nishiate, M.G. Kanatzidis, and A. Yamamoto, Energy Environ. Sci. 9, 517 (2016).

    Article  Google Scholar 

  9. K. Kato, Y. Hatasako, M. Kashiwagi, H. Hagino, C. Adachi, and K. Miyazaki, J. Electron. Mater. 43, 1733 (2014).

    Article  Google Scholar 

  10. O. Appel, M. Schwall, D. Mogilyansky, M. Köhne, B. Balke, and Y. Gelbstein, J. Electron. Mater. 42, 1340 (2013).

    Article  Google Scholar 

  11. O. Appel, T. Zilber, S. Kalabukhov, O. Beeri, and Y. Gelbstein, J. Mater. Chem. C 3, 11653 (2015).

    Article  Google Scholar 

  12. B. Dado, Y. Gelbstein, D. Mogilansky, V. Ezersky, and M.P. Dariel, J. Electron. Mater. 39, 2165 (2010).

    Article  Google Scholar 

  13. Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Phys. Status Solidi Rapid Res. Lett. 1, 232 (2007).

    Article  Google Scholar 

  14. T.C. Harman, J. Appl. Phys. 29, 1373 (1958).

    Article  Google Scholar 

  15. G.J. Snyder, J.-P. Fleurial, T. Caillat, R. Yang, and G. Chen, J. Appl. Phys. 92, 1564 (2002).

    Article  Google Scholar 

  16. J.N. Mao, H.X. Chen, H. Jia, and X.L. Qian, J. Appl. Phys. 112, 014514 (2012).

    Article  Google Scholar 

  17. J. García-Cañadas and G. Min, J. Electron. Mater. 43, 2411 (2014).

    Article  Google Scholar 

  18. J. García-Cañadas and G. Min, J. Appl. Phys. 116, 174510 (2014).

    Article  Google Scholar 

  19. C.-Y. Yoo, Y. Kim, J. Hwang, H. Yoon, B.J. Cho, G. Min, and S.H. Park, Energy 152, 834 (2018).

    Article  Google Scholar 

  20. B. Beltrán-Pitarch, J. Prado-Gonjal, A.V. Powell, P. Ziolkowski, and J. García-Cañadas, J. Appl. Phys. 124, 25105 (2018).

    Article  Google Scholar 

  21. B. Beltrán-Pitarch, L. Márquez-García, G. Min, and J. García-Cañadas, Meas. Sci. Technol. 28, 045902 (2017).

    Article  Google Scholar 

  22. B. Beltrán-Pitarch and J. García-Cañadas, J. Appl. Phys. 123, 084505 (2018).

    Article  Google Scholar 

  23. R. Mesalam, H.R. Williams, R.M. Ambrosi, J. García-Cañadas, and K. Stephenson, Appl. Energy 226, 1208 (2018).

    Article  Google Scholar 

  24. M. Otsuka, Y. Hasegawa, T. Arisaka, R. Shinozaki, and H. Morita, Appl. Phys. Express 10, 115801 (2017).

    Article  Google Scholar 

  25. B.A. Boukamp, J. Electrochem. Soc. 142, 1885 (1995).

    Article  Google Scholar 

  26. B.A. Boukamp, Solid State Ion. 169, 65 (2004).

    Article  Google Scholar 

  27. B. Hirschorn and M.E. Orazem, J. Electrochem. Soc. 156, C345 (2009).

    Article  Google Scholar 

  28. Y. Zhou, I. Matsubara, R. Funahashi, G. Xu, and M. Shikano, Mater. Res. Bull. 38, 341 (2003).

    Article  Google Scholar 

  29. J.W. Park, D.H. Kwak, S.H. Yoon, and S.C. Choi, J. Alloys Compd. 487, 550 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172010000830). This research was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP)(NRF-2015R1A5A1036133). Yeongseon Kim (Korea Advanced Institute of Science and Technology) and Juyeon Hwang (Chungnam National University) are gratefully acknowledged for preparation of the SKD-based device. Dr. Jorge García-Cañadas (Universitat Jaume I) is gratefully acknowledged for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chung-Yul Yoo or Sang Hyun Park.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, CY., Yoon, H. & Park, S.H. Direct Comparison of Thermoelectric Devices Using Impedance Spectroscopy. J. Electron. Mater. 48, 1833–1839 (2019). https://doi.org/10.1007/s11664-018-6777-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6777-5

Keywords

Navigation