Skip to main content
Log in

Numerical Simulation of Mobility Effects on Transient Electroluminescence Spikes in Organic Light-Emitting Diodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we simulate the transient electroluminescence (EL) in organic light-emitting diodes. The forming mechanism of transient EL spikes is discussed in detail. After applying a voltage pulse, the remaining mobile charges drift to the opposite trapped charges and lead to an increase in the exciton recombination rate, which corresponds to the EL spike phenomenon. We observe an EL spike in a solution-processed 2,4,5,6-tetrakis(carbazol-9-yl)-1,3-dicyanobenz-ene(4CzIPN)-doped emitting device, in which 4CzIPN acts as an electron trapping center and confines the electrons within the emitting layer. To further study the effect of the mobility on the EL spike, we simulate it at different electron/hole mobilities. The results show that increasing the hole mobility increases the EL spike. Moreover, when the charge mobility is temperature- and electric field-dependent, the simulation results suggest that if the charge mobility is more susceptible to the electric field, then a lower EL spike is observed, whereas with temperature decrease, a longer tailing is noticeable at the falling edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913–915 (1987).

    Article  Google Scholar 

  2. F. So and D. Kondakov, Adv. Mater. 22, 3762–3777 (2010).

    Article  Google Scholar 

  3. T. Fleetham, G. Li, and J. Li, Adv. Mater. 29, 7116 (2017).

    Article  Google Scholar 

  4. M.K. Fung, Y.Q. Li, and L.S. Liao, Adv. Mater. 28, 10381–10408 (2016).

    Article  Google Scholar 

  5. Y. Zhao, L. Zh, J. Chen, and D. Ma, Org. Electron. 13, 1340–1348 (2012).

    Article  Google Scholar 

  6. H. Bassler and A. Kohler, Top. Curr. Chem. 312, 1–65 (2012).

    Google Scholar 

  7. K. Cheon and J. Shinar, Phys. Rev. B 69, 201306 (2004).

    Article  Google Scholar 

  8. Y. Luo and H. Aziz, Adv. Funct. Mater. 20, 1285–1293 (2010).

    Article  Google Scholar 

  9. C. Weichsel, L. Burtone, S. Reineke, S.I. Hintschich, M.C. Gather, K. Leo, and B. Lüssem, Phys. Rev. B 86, 075204 (2012).

    Article  Google Scholar 

  10. Q.M. Peng, P. Chen, and F.T. Li, Appl. Phys. Lett. 102, 023301 (2013).

  11. D. Yokoyama, Y. Park, B. Kim, S. Kim, Y.J. Pu, J. Kido, and J. Park, Appl. Phys. Lett. 99, 123303 (2011).

    Article  Google Scholar 

  12. B. Ruhstaller and S.A. Kart, J. Appl. Phys. 89, 4575 (2001).

    Article  Google Scholar 

  13. S. Altazin, S. Züfle, E. Knapp, C. Krisch, T.D. Schmidt, L. Jäger, Y. Noguchi, W. Brütting, and B. Ruhstaller, Org. Electron. 39, 244–249 (2016).

    Article  Google Scholar 

  14. H. Houili, E. Tutiš, H. Lütjens, M.N. Bussac, and L. Zuppiroli, Comput. Phys. Commun. 156, 108–122 (2003).

    Article  Google Scholar 

  15. H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori, and Y. Shirota, Adv. Funct. Mater. 19, 3948–3955 (2009).

    Article  Google Scholar 

  16. Z. Gan, R. Liu, R. Shinar, and I. Shinar, Appl. Phys. Lett. 97, 113301 (2010).

    Article  Google Scholar 

  17. R. Liu, Z. Gan, R. Shinar, and J. Shinar, Phys. Rev. B 83, 245302 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Xu or Juntao Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Hu, S., Hu, J. et al. Numerical Simulation of Mobility Effects on Transient Electroluminescence Spikes in Organic Light-Emitting Diodes. J. Electron. Mater. 48, 838–844 (2019). https://doi.org/10.1007/s11664-018-6772-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6772-x

Keywords

Navigation