Skip to main content

Advertisement

Log in

Silver Sintered Joint Property Between Silicon Carbide Device and Ceramic Substrate for Electric Vehicle Power Module

  • TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Highly reliable sintering technologies operating in extreme conditions are being extensively researched nowadays to improve the efficiency of power modules based on silicon carbide (SiC) devices for use in electric vehicles. In this study, the strength of silver (Ag) sintered joints used in SiC/direct bonded copper (DBC) was recorded at 21.9–23 MPa, at a pressure of 0.2 MPa and zero pressure, at 210°C using 83 wt.% and 88 wt.% Ag paste. Al2O3 and AlN DBCs with copper and Ag finishes were used. The inter-diffusion of the Cu-Ag and the Ag-Ag sintered interfaces contributed to increasing bonding strength. Based on the relationship between bonding layer thickness and densification in the pressurized and pressureless sintering conditions, if densification was at least 93%, the strength of the Ag joint strength was as high as 23.8 MPa. From the results of a simulation of thermal deformation based on the mismatch in the coefficients of thermal expansion of materials without considering heat transfer, the Al2O3 DBC material (rather than AlN) exhibited a small and dispersed deformation of the SiC/DBC sintered module. We also observed that Al2O3 DBC was favorable in terms of warpage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ryu, B. Hull, S. Dhar, L. Cheng, Q. Zhang, J. Richmond, M. Das, A. Agarwal, J. Palmour, A. Lelis, B. Geil, and C. Scozzie, Mater. Sci. Forum 645, 969 (2010).

    Article  Google Scholar 

  2. J. Millan, in Semiconductor Conference (CAS) (2012), p. 57.

  3. H. Zhang, W. Li, Y. Gao, H. Zang, J. Jiu, and K. Suganuma, J. Electron. Mater. 46, 5201 (2017).

    Article  Google Scholar 

  4. H. Chin, K. Cheong, and A. Ismail, Metall. Mater. Trans. B 41, 824 (2010).

    Article  Google Scholar 

  5. K.N. Tu and K. Zeng, Mater. Sci. Eng. R Rep. 34, 1 (2001).

    Article  Google Scholar 

  6. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R Rep. 27, 95 (2000).

    Article  Google Scholar 

  7. S.W. Yoon, M.D. Glover, and K. Shiozaki, IEEE Trans. Power Electron. 28(5), 2448 (2013).

  8. http://acCuratus.com, http://www.matweb.com. Accessed 30 March 2018.

  9. Maruwa Company, http://www.maruwa-g.com/e/pro ducts/ceramic/ceramic-substrate-4.html. Accessed 6 Apr 2018.

  10. S.-K. Lin, S. Nagao, E. Yoko, C. Oh, H. Zhang, Y. Liu, S. Lin, and K. Suganuma, Sci. Rep. 6, 34769 (2016).

    Article  Google Scholar 

  11. C. Oh, S. Nagao, T. Kunimune, and K. Suganuma, Appl. Phys. Lett. 104, 161603 (2014).

    Article  Google Scholar 

  12. C. Oh, S. Nagao, and K. Suganuma, J. Mater. Sci. Mater. Electron. 26, 2525 (2015).

    Article  Google Scholar 

  13. A. Michaelides, M.L. Bocquet, P. Sautet, A. Alavi, and D.A. King, Chem. Phys. Lett. 367, 344 (2003).

    Article  Google Scholar 

  14. J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, and Y. Zhou, Scr. Mater. 66, 582 (2012).

    Article  Google Scholar 

  15. J.S. Horschhorn, Introduction to Powder Metallurgy (USA: The Colonial Press Inc., 1969), pp. 155–273.

    Google Scholar 

  16. A. Lis, K. Asama, T. Matsuda, T. Santo, and A. Hirose, J. Electron. Mater. 46, 6488 (2017).

    Article  Google Scholar 

  17. W.S. Hong and S.S. Cha, J. Microelectron. Packag. Soc. 19, 67 (2012).

    Article  Google Scholar 

  18. S. Divinski, M. Lohmann, and C. Herzig, Acta Mater. 49, 249 (2001).

    Article  Google Scholar 

  19. R. Shioda, Y. Kariya, N. Mizumura, and K. Sasaki, J. Electron. Mater. 46, 1155 (2017).

    Article  Google Scholar 

  20. E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).

    Article  Google Scholar 

  21. K.S. Siow, J. Electron. Mater. 43, 947 (2014).

    Article  Google Scholar 

  22. S. Wang, H. Ji, M. Li, and C. Wang, Mater. Lett. 85, 61 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 10063263). We thank Sang-gyu Park and Yong-won Cho of ANSYS Korea for help with the simulation data for deformation (warpage analysis of Ag sintered SiC/DBC module).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Sik Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W.S., Kim, M.S., Kim, D. et al. Silver Sintered Joint Property Between Silicon Carbide Device and Ceramic Substrate for Electric Vehicle Power Module. J. Electron. Mater. 48, 122–134 (2019). https://doi.org/10.1007/s11664-018-6769-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6769-5

Keywords

Navigation