Skip to main content
Log in

Nucleation and Growth of Tin Hillocks by In Situ Nanoindentation

  • TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

For several decades, tin whiskers have been a major reliability issue in the microelectronics industry. These single crystalline tin filaments can grow long enough to cause short circuiting and device failure. Although tin whisker/hillock growth is driven by compressive stresses, a mechanistic model of their formation, evolution, and microstructural influence has not been fully developed. In this work, the growth of mechanically induced tin whiskers/hillocks was studied using an in situ nanoindenter and electron backscatter diffraction in a dedicated scanning electron microscope. Electroplated Sn-on-Cu samples were indented and monitored in vacuum to study their growth behavior without the influence of atmosphere. Aging experiments were conducted to study the effect of intermetallics on hillock growth. The grain orientation of the hillocks and the plastically deformed area surrounding the indentation were studied on slabs lifted out of the sample with the use of focused ion beam. High-angle grain boundaries were seen to favor the formation of Sn hillocks. A finite element model was developed to study the evolution of the compressive stress state in the Sn plating and the results showed good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Tu, Phys. Rev. B 49, 3 (1994).

    Google Scholar 

  2. M. Sampson, Tin Whisker (and Other Metal Whisker) Homepage (2009). http://nepp.nasa.gov/whisker/backgrou nd/index.htm. Accessed 25 Mar 2018.

  3. V.G. Karpov, SMT Mag. 30, 2 (2015).

    Google Scholar 

  4. A.C. Vasko, C.R. Grice, A.D. Kostik, and V.G. Karpov, MRS Commun. 5, 04 (2015).

    Article  Google Scholar 

  5. M. Schlesinger and M. Paunovic, Modern Electroplating, Vol. 55 (New York: Wiley, 2011), pp. 433–446.

    Google Scholar 

  6. M. Warwick, J. SMTA 12, 1 (1999).

  7. J.J. Williams, N.C. Chapman, and N. Chawla, JEM 42, 2 (2012).

    Google Scholar 

  8. R. Weil, Plating 58, 1 (1971).

    Google Scholar 

  9. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, and K.W. Moon, Acta Mater. 53, 19 (2005).

    Google Scholar 

  10. C. Xu, Y. Zhang, C. Fan, and J.A. Abys, IEEE Trans. Electron. Packag. Manuf. 28, 1 (2005).

    Article  Google Scholar 

  11. T. Shibutani, Q. Yu, T. Yamashita, and M. Shiratori, IEEE Trans. Electron. Packag. Manuf. 29, 4 (2006).

    Article  Google Scholar 

  12. K.N. Tu, C. Chen, and A.T. Wu, J. Mater. Sci. Mater. Electron. 18, 1 (2006).

    Article  Google Scholar 

  13. N. Jadhav, E.J. Buchovecky, L. Reinbold, S. Kumar, A.F. Bower, and E. Chason, IEEE Trans. Electron. Packag. Manuf. 33, 3 (2010).

    Article  Google Scholar 

  14. S.K. Kang, J. Chang, J.H. Lee, K.S. Kim, and H.M. Lee, in Electronic Components and Technology Conference (ECTC) IEEE 63rd. (2013), pp. 1018–1023.

  15. S.K. Lin, Y. Yorikado, J. Jiang, K.S. Kim, K. Suganuma, S.W. Chen, M. Tsujimoto, and I. Yanada, JMR 22, 7 (2007).

    Google Scholar 

  16. S.K. Lin, Y. Yorikado, J. Jiang, K.S. Kim, K. Suganuma, S.W. Chen, M. Tsujimoto, and I. Yanada, JEM 36, 12 (2007).

    Google Scholar 

  17. K. Doudrick, J. Chinn, J. Williams, N. Chawla, and K. Rykaczewski, Microelectron. Reliab. 55, 5 (2015).

    Article  Google Scholar 

  18. R. Vallabhaneni, E. Izadi, C.R. Mayer, C.S. Kaira, S.S. Singh, J. Rajagopalan, and N. Chawla, Microelectron. Reliab. 79 (2017).

  19. M.A. Dudek and N. Chawla, Acta Mater. 57, 4588 (2009).

    Article  Google Scholar 

  20. Y. Mizuguchi, Y. Murakami, S. Tomiya, T. Asai, T. Kiga, and K. Suganuma, J. Electron. Mater. 41, 7 (2012).

    Article  Google Scholar 

  21. C. Hillman, G. Kittlesen, and R. Schueller, A new (better) approach to tin whisker mitigation, DfR Solutions White Paper (2011).

  22. A. Kirubanandham, I. Lujan-Regalado, R. Vallabhaneni, and N. Chawla, JOM 68, 11 (2016).

    Article  Google Scholar 

  23. B. Illés, B. Horváth, and G. Harsányi, Surf. Coat. Technol. 205, 7 (2010).

    Article  Google Scholar 

  24. H.Y. Hsiao, C.M. Liu, H.W. Lin, T.C. Liu, C.L. Lu, Y.S. Huang, C. Chen, and K.N. Tu, Science 336, 6084 (2012).

    Article  Google Scholar 

  25. A. Gusak and K.N. Tu, Phys. Rev. B Condens. Matter 66, 11 (2002).

    Article  Google Scholar 

  26. J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, and D.A. Hutt, Acta Mater. 54, 11 (2006).

    Article  Google Scholar 

  27. X. Deng, G. Piotrowski, J.J. Williams, and N. Chawla, J. Electron. Mater. 32, 12 (2003).

    Article  Google Scholar 

  28. P. Jagtap, A. Chakraborty, P. Eisenlohr, and P. Kumar, (2017) Acta Mater. 134, 346 (2017).

  29. P. Sarobol, W.H. Chen, A.E. Pedigo, P. Su, J.E. Blendell, and C.A. Handwerker, J. Mater. Res. 28, 5 (2013).

    Google Scholar 

  30. X. Deng, N. Chawla, K.K. Chawla, and M. Koopman, Acta Mater. 16, 52 (2004).

    Google Scholar 

  31. S. Jeong, N. Murata, Y. Sato, K. Suzuki, and H. Miura, Trans. Jpn. Inst. Electron. Packag. 2, 1 (2009).

    Article  Google Scholar 

  32. K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita, and K. Takahashi, Jpn. J. Appl. Phys. 43, 4S (2004).

    Article  Google Scholar 

  33. K.E. Yazzie, J.J. Williams, and N. Chawla, J. Electron. Mater. 41, 9 (2012).

    Article  Google Scholar 

  34. S. Sawada, K. Shimizu, S. Shimada, and Y. Hattori, SEI Tech. Rev. 71 (2010).

  35. P.F. Yang, Y.-S. Lai, S.-R. Jian, J. Chen, and R.-S. Chen, Mater. Sci. Eng. A 485, 305 (2008).

    Article  Google Scholar 

  36. G.Y. Jang, J.W. Lee, and J.G. Duh, J. Electron. Mater. 33, 10 (2004).

    Google Scholar 

Download references

Acknowledgments

Financial support from the National Council of Science and Technology of Mexico (Consejo Nacional de Ciencia y Tecnologia—CONACyT) is gratefully acknowledged. The authors acknowledge the use of FIB-SEM facilities at the Leroy Eyring Center for Solid State Science and the Center for 4D Materials Science at Arizona State University. The authors are thankful to Dr. Carl Mayer, Dr. Renuka Vallabhaneni, and Dr. Shashank Kaira for assistance with FIB lift-outs and technical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhilesh Chawla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lujan-Regalado, I., Kirubanandham, A., Williams, J.J. et al. Nucleation and Growth of Tin Hillocks by In Situ Nanoindentation. J. Electron. Mater. 48, 58–71 (2019). https://doi.org/10.1007/s11664-018-6669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6669-8

Keywords

Navigation