Skip to main content
Log in

Nb and Ta Co-Doped TiO2 Transparent Conductive Thin Films by Magnetron Sputtering: Fabrication, Structure, and Characteristics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nb and Ta co-doped anatase titanium dioxide (NTTO) nanocrystalline thin films were deposited on quartz and Si (100) substrates by RF magnetron sputtering. The influence of RF power on the growth, structure, morphology, and properties of the samples are discussed in detail. X-ray diffraction measurements show that the films are polycrystalline with anatase tetragonal structure, which is further confirmed by Raman spectroscopy analysis. Meanwhile, Raman spectroscopy results indicate that the peak width of Eg(1) mode, which is directly correlated to the carrier density, changes obviously with RF power. It is found that the substitution of Nb5+ and Ta5+ at Ti site is significantly improved with the increase of RF power from 150 W to 210 W. For the sample deposited at 210 W, the optical transmittance is above 82% in the visible range and the electrical resistivity is as low as 1.3 × 10−3 Ω cm with carrier density of 1.1 × 1021 cm−3 and Hall mobility of 4.5 cm2 V−1 s−1. The optical and electrical properties of NTTO thin films can be compared to those of Nb or Ta doped anatase TiO2. However, co-doping with Nb and Ta gives a possible platform to complement the limitations of each individual dopant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Seeger, K. Ellmer, M. Weise, D. Gogova, D. Abou-Ras, and R. Mientus, Thin Solid Films 605, 44 (2016).

    Article  Google Scholar 

  2. E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, Thin Solid Films 487, 205 (2005).

    Article  Google Scholar 

  3. Y. Wang, M. Xu, J. Li, J. Ma, X. Wang, Z. Wei, X. Chu, X. Fang, and F. Jin, Surf. Coat. Technol. 330, 255 (2017).

    Article  Google Scholar 

  4. Y. Wang, D.P. Wilkinson, V. Neburchilov, C. Song, A. Guest, and J. Zhang, J. Mater. Chem. A 2, 12681 (2014).

    Article  Google Scholar 

  5. E.J.W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, and H.J. Snaith, Nature 495, 215 (2013).

    Article  Google Scholar 

  6. X. Lue, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, and S. Huang, Adv. Funct. Mater. 20, 509 (2010).

    Article  Google Scholar 

  7. P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, and P.V. Thomas, Appl. Surf. Sci. 257, 10869 (2011).

    Article  Google Scholar 

  8. M.A. Gillispie, M.F.A.M. van Hest, M.S. Dabney, J.D. Perkins, and D.S. Ginley, J. Mater. Res. 22, 2832 (2007).

    Article  Google Scholar 

  9. K. Ok, Y. Park, K. Chung, and J. Park, Appl. Phys. Lett. 103, 213501 (2013).

    Article  Google Scholar 

  10. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, and T. Hasegawa, Appl. Phys. Lett. 86, 252101 (2005).

    Article  Google Scholar 

  11. K. Safeen, V. Micheli, R. Bartali, G. Gottardi, A. Safeen, H. Ullah, and N. Laidani, Mater. Sci. Semicond. Process. 66, 74 (2017).

    Article  Google Scholar 

  12. P. Mazzolini, P. Gondoni, V. Russo, D. Chrastina, C.S. Casari, and A.L. Bassi, J. Phys. Chem. C 119, 6988 (2015).

    Article  Google Scholar 

  13. H. Anh Huy, B. Aradi, T. Frauenheim, and P. Deák, J. Appl. Phys. 112, 16103 (2012).

    Article  Google Scholar 

  14. Y. Sato, H. Akizuki, T. Kamiyama, and Y. Shigesato, Thin Solid Films 516, 5758 (2008).

    Article  Google Scholar 

  15. H. Lee and J. Robertson, J. Appl. Phys. 113, 213706 (2013).

    Article  Google Scholar 

  16. D.H. Zhang, T.L. Yang, J. Ma, Q.P. Wang, R.W. Gao, and H.L. Ma, Appl. Surf. Sci. 158, 43 (2000).

    Article  Google Scholar 

  17. S.S. Lin, J.L. Huang, and D.F. Lii, Surf. Coat. Technol. 176, 173 (2004).

    Article  Google Scholar 

  18. V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, R.A. Caruso, D.G. Shchukin, and B.C. Muddle, Phys. Rev. B 71, 184302 (2005).

    Article  Google Scholar 

  19. M.V. Castro, L. Rebouta, P. Alpuim, M.F. Cerqueira, M. Benelmekki, C.B. Garcia, E. Alves, N.P. Barradas, E. Xuriguera, and C.J. Tavares, Thin Solid Films 550, 404 (2014).

    Article  Google Scholar 

  20. C. Lejon and L. Osterlund, J. Raman Spectrosc. 42, 2026 (2011).

    Article  Google Scholar 

  21. E. Uyanga, A. Gibaud, P. Daniel, D. Sangaa, G. Sevjidsuren, P. Altantsog, T. Beuvier, C.H. Lee, and A.M. Balagurov, Mater. Res. Bull. 60, 222 (2014).

    Article  Google Scholar 

  22. S. Sahoo, A.K. Arora, and V. Sridharan, J. Phys. Chem. C 113, 16927 (2009).

    Article  Google Scholar 

  23. P. Mazzolini, V. Russo, C.S. Casari, T. Hitosugi, S. Nakao, T. Hasegawa, and A.L. Bassi, J. Phys. Chem. C 120, 18878 (2016).

    Article  Google Scholar 

  24. A.V. Manole, M. Dobromir, M. Girtan, R. Mallet, G. Rusu, and D. Luca, Ceram. Int. 39, 4771 (2013).

    Article  Google Scholar 

  25. X.H. Xia, L. Lu, A.S. Walton, M. Ward, X.P. Han, R. Brydson, J.K. Luo, and G. Shao, Acta Mater. 60, 1974 (2012).

    Article  Google Scholar 

  26. M.Z. Atashbar, H.T. Sun, B. Gong, W. Wlodarski, and R. Lamb, Thin Solid Films 326, 238 (1998).

    Article  Google Scholar 

  27. M.V. Kuznetsov, A.S. Razinkin, and E.V. Shalaeva, J. Struct. Chem. 50, 514 (2009).

    Article  Google Scholar 

  28. L. Lu, M. Guo, S. Thornley, X. Han, J. Hu, M.J. Thwaites, and G. Shao, Sol. Energy Mater. Sol. C 149, 310 (2016).

    Article  Google Scholar 

  29. C. Huang, J. Bow, Y. Zheng, S. Chen, N.J. Ho, and P. Shen, Nanoscale Res. Lett. 5, 972 (2010).

    Article  Google Scholar 

  30. H. Su, Y. Huang, Y. Chang, P. Zhai, N.Y. Hau, P.C.H. Cheung, W. Yeh, T. Wei, and S. Feng, Electrochim. Acta 182, 230 (2015).

    Article  Google Scholar 

  31. H. Kim, M. Osofsky, S.M. Prokes, O.J. Glembocki, and A. Pique, Appl. Phys. Lett. 102, 171103 (2013).

    Article  Google Scholar 

  32. K. Zhu, Y. Yang, and W. Song, Mater. Lett. 145, 279 (2015).

    Article  Google Scholar 

  33. H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, J. Vac. Sci. Technol. A 22, 1757 (2004).

    Article  Google Scholar 

  34. Y.M. Hu, J.Y. Li, N.Y. Chen, C.Y. Chen, T.C. Han, and C.C. Yu, J. Appl. Phys. 121, 85302 (2017).

    Article  Google Scholar 

  35. G. Wan, S. Wang, X. Zhang, M. Huang, Y. Zhang, W. Duan, and L. Yi, Appl. Surf. Sci. 357, 622 (2015).

    Article  Google Scholar 

  36. M. Neubert, S. Cornelius, J. Fiedler, T. Gebel, H. Liepack, A. Kolitsch, and M. Vinnichenko, J. Appl. Phys. 114, 083707 (2013).

    Article  Google Scholar 

  37. Q. Ma, Z. Ye, H. He, J. Wang, L. Zhu, and B. Zhao, Vacuum 82, 9 (2007).

    Article  Google Scholar 

  38. L. Nkhaili, A. El Kissani, M.A. Ali, Y. Ijdiyaou, A. Elmansouri, A. Elkhalfi, and A. Outzourhit, Eur. Phys. J. Appl. Phys. 66, 30302 (2014).

    Article  Google Scholar 

  39. R.J. Hong, X. Jiang, B. Szyszka, V. Sittinger, and A. Pflug, Appl. Surf. Sci. 207, 341 (2003).

    Article  Google Scholar 

  40. Z. Tseng, L. Chen, J. Tang, M. Shih, and S. Chu, J. Electron. Mater. 46, 1476 (2017).

    Article  Google Scholar 

  41. H. Mahdhi, S. Alaya, J.L. Gauffier, K. Djessas, and Z. Ben, Ayadi. J. Alloys Compd. 695, 697 (2017).

    Article  Google Scholar 

  42. R.G. Waykar, A.S. Pawbake, R.R. Kulkarni, A.A. Jadhavar, A.M. Funde, V.S. Waman, H.M. Pathan, and S.R. Jadkar, J. Mater. Sci. Mater. Electron. 27, 1134 (2016).

    Article  Google Scholar 

  43. C.M. Maghanga, G.A. Niklasson, and C.G. Granqvist, Thin Solid Films 518, 1254 (2009).

    Article  Google Scholar 

  44. P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, Curr. Appl. Phys. 9, 707 (2009).

    Article  Google Scholar 

  45. M. Rasheed and R. Barille, J. Non-cryst. Solids 476, 1 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Analytical and Testing Center in Huazhong University of Science and Technology for XRD, SEM, XPS and Raman measurements. The finance support from the National Natural Science Foundation of China (11374114) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Peng, Q., Qiao, Y. et al. Nb and Ta Co-Doped TiO2 Transparent Conductive Thin Films by Magnetron Sputtering: Fabrication, Structure, and Characteristics. J. Electron. Mater. 47, 5334–5343 (2018). https://doi.org/10.1007/s11664-018-6399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6399-y

Keywords

Navigation