Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 4022–4027 | Cite as

Electrostatics of Nanowire Radial pn Heterojunctions

  • Vitalii Borblik
Article
  • 29 Downloads

Abstract

The electrostatics of a nanowire radial heterostructure pn junction is considered theoretically. It is shown that when the radius of the core–shell interface decreases, depletion width of the core increases, but depletion width of the shell, on the contrary, decreases. This is the consequence of cylindrical symmetry of the structure. Thereby, the relative contribution from the constituent materials into performance characteristics of the devices, which use a heterostructure pn junction, changes substantially. Values of the depletion widths in the heterostructure pn junction prove to be intermediate between those in radial homostructure pn junctions made of the constituent materials at the same doping levels. An analogous situation takes place for a barrier capacitance of the radial heterostructure pn junction.

Keywords

Core–shell nanowire heterostructure pn junction depletion width barrier capacitance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber, Nature 449, 885 (2007).CrossRefGoogle Scholar
  2. 2.
    S.P. Mondal and S.K. Ray, Appl. Phys. Lett. 94, 223119 (2009).CrossRefGoogle Scholar
  3. 3.
    C.-Y. Huang, Y.-J. Yang, J.-Y. Chen, C.-H. Wang, Y.-F. Chen, L.-S. Hong, C.-S. Liu, and C.-Y. Wu, Appl. Phys. Lett. 97, 013503 (2010).CrossRefGoogle Scholar
  4. 4.
    J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, Nat. Nanotechnol. 6, 568 (2011).CrossRefGoogle Scholar
  5. 5.
    S. Panigrahi and D. Basa, RSC Adv. 2, 11963 (2012).CrossRefGoogle Scholar
  6. 6.
    S. Manna, S. Das, S.P. Mondal, R. Singha, and S.K. Ray, J. Phys. Chem. C 116, 7126 (2012).CrossRefGoogle Scholar
  7. 7.
    K. Moratis, S.L. Tan, S. Germanis, C. Katsidis, M. Androulidaki, K. Tsagaraki, Z. Hatzopoulos, F. Donatini, J. Cibert, Y.-M. Niquet, H. Mariette, and N.T. Pelekanos, Nanoscale Res. Lett. 11, 176 (2016).CrossRefGoogle Scholar
  8. 8.
    A. Hosseini, P. Kar, L.-H. Hsieh, B.D. Wiltshire, A. Mohammadpour, S. Farsinezhad, M. Benlamri, Y. Zhang, C. Ercelebi, and K. Shankar, J. Nanosci. Nanotechnol. 17, 5119 (2017).CrossRefGoogle Scholar
  9. 9.
    I.T. Yoon, H.D. Cho, H.Y. Cho, D.W. Kwak, and S. Lee, J. Electron. Mater. 46, 4119 (2017).CrossRefGoogle Scholar
  10. 10.
    F. Qian, Y. Li, S. Gradečak, D. Wang, C.J. Barrelet, and C.M. Lieber, Nano Lett. 4, 1975 (2004).CrossRefGoogle Scholar
  11. 11.
    F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C.M. Lieber, Nano Lett. 5, 2287 (2005).CrossRefGoogle Scholar
  12. 12.
    C.P.T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, Nanotechnology 19, 305201 (2008).CrossRefGoogle Scholar
  13. 13.
    K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, Nano Lett. 10, 1639 (2010).CrossRefGoogle Scholar
  14. 14.
    O. Tizno, B. Ganjipour, M. Heurlin, C. Thelander, M.T. Borgstrom, and L. Samuelson, Appl. Phys. Lett. 110, 113501 (2017).CrossRefGoogle Scholar
  15. 15.
    J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C.M. Lieber, Nature 441, 489 (2006).CrossRefGoogle Scholar
  16. 16.
    X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li, and C.M. Lieber, Nano Lett. 7, 3214 (2007).CrossRefGoogle Scholar
  17. 17.
    B.L. Sharma and R.K. Purohit, Semiconductor Heterojunctions (Oxford: Pergamon Press, 1974).Google Scholar
  18. 18.
    B.M. Kayes, H.A. Atwater, and N.S. Lewis, J. Appl. Phys. 97, 114302 (2005).CrossRefGoogle Scholar
  19. 19.
    S. Petrosyan, A. Yesayan, and S. Nersesyan, World Acad. Sci. Eng. Technol. 71, 1065 (2012).Google Scholar
  20. 20.
    A.C.E. Chia and R.R. LaPierre, J. Appl. Phys. 114, 074317 (2013).CrossRefGoogle Scholar
  21. 21.
    V.L. Borblik, Semicond. Phys. Quantum Electron. Optoelectron. 20, 168 (2017).CrossRefGoogle Scholar
  22. 22.
    R.L. Anderson, Solid State Electron. 5, 341 (1962).CrossRefGoogle Scholar
  23. 23.
    S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981).Google Scholar
  24. 24.
    V. Borblik, J. Electron. Mater. 45, 4117 (2016).CrossRefGoogle Scholar
  25. 25.
    J. Pollmann and A. Mazur, Thin Solid Films 104, 257 (1983).CrossRefGoogle Scholar
  26. 26.
    W. Pollard, J. Appl. Phys. 69, 3154 (1991).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.V. E. Lashkaryov Institute of Semiconductor PhysicsKievUkraine

Personalised recommendations