Journal of Electronic Materials

, Volume 47, Issue 7, pp 4003–4009 | Cite as

Carbon Nano-particle Synthesized by Pulsed Arc Discharge Method as a Light Emitting Device

  • Ramin Ahmadi
  • Mohamad Taghi Ahmadi
  • Razali Ismail


Owing to the specific properties such as high mobility, ballistic carrier transport and light emission, carbon nano-particles (CNPs) have been employed in nanotechnology applications. In the presented work, the CNPs are synthesized by using the pulsed arc discharge method between two copper electrodes. The rectifying behaviour of produced CNPs is explored by assuming an Ohmic contact between the CNPs and the electrodes. The synthesized sample is characterized by electrical investigation and modelling. The current–voltage (IV) relationship is investigated and bright visible light emission from the produced CNPs was measured. The electroluminescence (EL) intensity was explored by changing the distance between two electrodes. An incremental behaviour on EL by a resistance gradient and distance reduction is identified.


Carbon nano-particles pulsed arc discharge synthesis light emission electroluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Harb, C.V.K. Schmising, H. Enquist, A. Jurgilaitis, I. Maximov, P.V. Shvets, A.N. Obraztsov, D. Khakhulin, M. Wulff, and J. Larsson, Appl. Phys. Lett. 101, 233108 (2012).CrossRefGoogle Scholar
  2. 2.
    P. Avouris, Z. Chen, and V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007).CrossRefGoogle Scholar
  3. 3.
    H. Dai, A. Javey, E. Pop, D. Mann, W. Kim, and Y. Lu, NANO 1, 1 (2006).CrossRefGoogle Scholar
  4. 4.
    P. Avouris, J. Appenzeller, R. Martel, and S.J. Wind, Proc. IEEE 91, 1772 (2003).CrossRefGoogle Scholar
  5. 5.
    R. Lin and T. Tran, J. Electron. Mater. 45, 2490 (2016).CrossRefGoogle Scholar
  6. 6.
    N.M.R. Peres, Vacuum 83, 1248 (2009).CrossRefGoogle Scholar
  7. 7.
    B.S. Yim and J.M. Kim, J. Mater. Sci. Mater. Electron. 27, 9159 (2016).CrossRefGoogle Scholar
  8. 8.
    R. Salgado-Delgado, A. Olarte-Paredes, Z. Vargas-Galarza, E. García-Hernández, A.M. Salgado-Delgado, E. Rubio-Rosas, J. Campos-álvarez, and V.M. Castaño, J. Electron. Mater. 45, 5341 (2016).CrossRefGoogle Scholar
  9. 9.
    J. Hass, W.A. De Heer, and E.H. Conrad, J. Phys. Condens. Matter 20, 323202 (2008).CrossRefGoogle Scholar
  10. 10.
    P. Avouris, M. Freitag, and V. Perebeinos, Nat. Photonics 2, 341 (2008).CrossRefGoogle Scholar
  11. 11.
    P.L. McEuen, M. Fuhrer, and H. Park, IEEE Trans. Nanotechnol. 99, 78 (2002).CrossRefGoogle Scholar
  12. 12.
    M.S. Poorali and M.-M. Bagheri-Mohagheghi, J. Mater. Sci. Mater. Electron. 28, 6186 (2017).CrossRefGoogle Scholar
  13. 13.
    A.A. Koós, F. Dillon, R.J. Nicholls, L. Bulusheva, and N. Grobert, Chem. Phys. Lett. 538, 108 (2012).CrossRefGoogle Scholar
  14. 14.
    C.D. Scott, S. Arepalli, P. Nikolaev, and R.E. Smalley, Appl. Phys. A Mater. Sci. Process. 72, 573 (2001).CrossRefGoogle Scholar
  15. 15.
    Y.D. Kim, H. Kim, Y. Cho, J.H. Ryoo, C.H. Park, P. Kim, Y.S. Kim, S. Lee, Y. Li, S.N. Park, and Y.S. Yoo, Nat. Nanotechnol. 10, 676 (2015).CrossRefGoogle Scholar
  16. 16.
    T. Mueller, M. Kinoshita, M. Steiner, V. Perebeinos, A.A. Bol, D.B. Farmer, and P. Avouris, Nat. Nanotechnol. 5, 27 (2010).CrossRefGoogle Scholar
  17. 17.
    C.G. Li, K. Wang, J. Wei, B. Wei, H. Zhu, Z. Wang, J. Luo, W. Liu, M. Zheng, and D. Wu, Chin. Sci. Bull. 52, 113 (2007).CrossRefGoogle Scholar
  18. 18.
    V.N. Popov, Mater. Sci. Eng. R 43, 61 (2004).CrossRefGoogle Scholar
  19. 19.
    H. Kasani, M.T. Ahmadi, R. Khoda-Bakhsh, D. Rezaei-Ochbelagh, and R. Ismail, J. Appl. Phys. 119, 124510 (2016).CrossRefGoogle Scholar
  20. 20.
    S. Goyanes, G.R. Rubiolo, A. Salazar, A. Jimeno, M.A. Corcuera, and I. Mondragon, Diamond Relat. Mater. 16, 412 (2007).CrossRefGoogle Scholar
  21. 21.
    H.M. Kim, H.S. Kim, S.K. Park, J. Joo, T.J. Lee, and C.J. Lee, J. Appl. Phys. 97, 026103 (2005).CrossRefGoogle Scholar
  22. 22.
    S.M. Sze and K.K. Ng, Physics of semiconductor devices, 3rd ed. (New York: Wiley, 2006), pp. 154–164.CrossRefGoogle Scholar
  23. 23.
    A.J. Chiquito, C.A. Amorim, O.M. Berengue, L.S. Araujo, E.P. Bernardo, E.R. Leite, and J. Phys, Condens. Matter 24, 225303 (2012).CrossRefGoogle Scholar
  24. 24.
    X.L. Tang, H.W. Zhang, H. Su, and Z.Y. Zhong, Physica E 31, 103 (2006).CrossRefGoogle Scholar
  25. 25.
    S. Yamacli, Nano-Micro Lett. 5, 169 (2013).CrossRefGoogle Scholar
  26. 26.
    D. Dragoman and M. Dragoman, J. Phys. D Appl. Phys. 46, 055306 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ramin Ahmadi
    • 1
  • Mohamad Taghi Ahmadi
    • 1
    • 2
  • Razali Ismail
    • 2
  1. 1.Nano-electronic Research Group, Physics Department, Nano-Technology Research CenterUrmia UniversityUrmiaIran
  2. 2.Department of Electronics and Computer Engineering, Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations