Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3974–3982 | Cite as

Electrochromic Behaviors of Water-Soluble Polyaniline with Covalently Bonded Acetyl Ferrocene

  • Shanxin Xiong
  • Ru Wang
  • Shuaishuai Li
  • Bohua Wu
  • Jia Chu
  • Xiaoqin Wang
  • Runlan Zhang
  • Ming Gong
Article
  • 57 Downloads

Abstract

A novel ferrocene-containing hybrid electrochromic material was synthesized via copolymerization of aniline with p-phenylenediamine functionalized acetyl ferrocene in the presence of poly (styrene sulfonate) dopant in an aqueous medium, and neat polyaniline (PANI) was prepared for comparison. The polymerization characteristics and the structure of the copolymer were systematically studied by Fourier-transform infrared, meanwhile, their electrochromic properties and electrochemical behaviors were tested by UV–vis spectra, cyclic voltammetry and electrochemical impedance spectroscopy (EIS). It was found that the strong covalent bond and large conjugated system between PANI and ferrocene enhance the electron transfer rate and electron delocalization in the ferrocene-polyaniline (Fc-PANI) hybrid. In particular, the electrochromic device with Fc-PANI as the active layer shows significant enhancement in optical contrast over the PANI-based device.

Keywords

PANI ferrocene covalent bond electrochromism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51373134, 51503169).

Supplementary material

11664_2018_6281_MOESM1_ESM.pdf (105 kb)
Supplementary material 1 (PDF 105 kb)

References

  1. 1.
    V. Khomenko, E. Frackowiak, and F. Béguin, Electrochim. Acta 50, 2499 (2005).CrossRefGoogle Scholar
  2. 2.
    P.R. Somani and S. Radhakrishna, Mater. Chem. Phys. 77, 117 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Jang, J. Bae, M. Choi, and S.H. Yoon, Carbon 43, 2730 (2005).CrossRefGoogle Scholar
  4. 4.
    H. Mi, X. Zhang, X. Ye, and S. Yang, J. Power Sources 176, 403 (2008).CrossRefGoogle Scholar
  5. 5.
    X. Li, Z. Min, H. Xu, G. Wang, and Z. Wang, J. Mater. Sci. 49, 6830 (2014).CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, C. Dou, Q. Wang, Y. Li, and Y. Wang, Polym. Sci. Ser. A + 57, 756 (2015).Google Scholar
  7. 7.
    A.C. Nwanya, C.J. Jafta, P.M. Ejikeme, P.E. Ugwuoke, M.V. Reddy, and R.U. Osuji, Electrochim. Acta 128, 218 (2014).CrossRefGoogle Scholar
  8. 8.
    M.A. Deshmukh, M. Gicevicius, A. Ramanaviciene, M.D. Shirsat, R. Viter, and A. Ramanavicius, Sensor Actuat. B-Chem. 248, 527 (2017).CrossRefGoogle Scholar
  9. 9.
    H.M. Wang and S.H. Hsiao, J. Polym. Sci. Pol. Chem. 52, 272 (2013).CrossRefGoogle Scholar
  10. 10.
    J.H. Kang, Y.J. Oh, S.M. Paek, S.J. Hwang, and J.H. Choy, Sol. Energ. Mat. Sol. C. 93, 2040 (2009).CrossRefGoogle Scholar
  11. 11.
    C.W. Hu, T. Kawamoto, H. Tanaka, A. Takahashi, K.M. Lee, and S.Y. Kao, J. Mater. Chem. C (2016).  https://doi.org/10.1039/C6TC03351B.Google Scholar
  12. 12.
    Y. Yan, X. Jia, M. Feng, C. Wang, and D. Chao, J. Polym. Sci. Pol. Chem. (2017).  https://doi.org/10.1002/pola.28545.Google Scholar
  13. 13.
    R. Montazami, V. Jain, and J.R. Heflin, Electrochim. Acta 56, 990 (2011).CrossRefGoogle Scholar
  14. 14.
    G.F. Cai, J.P. Tu, D. Zhou, J.H. Zhang, X.L. Wang, and C.D. Gu, Sol. Energ. Mat. Sol. C. 122, 51 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Zhang, R. Fu, S. Wang, Y. Gu, and S. Chen, Mater. Lett. 202, 127 (2017).CrossRefGoogle Scholar
  16. 16.
    M. Jamdegni, S. Kaur-Ghumaan, and A. Kaur, Electrochim. Acta 252, 578 (2017).CrossRefGoogle Scholar
  17. 17.
    T.J. Kealy and P.L. Pauson, Nature 168, 1039 (1951).CrossRefGoogle Scholar
  18. 18.
    D.R. van Staveren and N. Metzler-Nolte, Chem. Rev. 36, 5931 (2004).CrossRefGoogle Scholar
  19. 19.
    H. Brisset, A.E. Navarro, C. Moustrou, I.F. Perepichka, and J. Roncali, Electrochem. Commun. 6, 249 (2004).CrossRefGoogle Scholar
  20. 20.
    A.E.G. Cass, G. Davis, G.D. Francis, H.A.O. Hill, W.J. Aston, and I.J. Higgins, Anal. Chem. 56, 667 (1984).CrossRefGoogle Scholar
  21. 21.
    C. Sanoe, S. Worawit, A. Maliwan, and S. Ekasith, Sensors-Base. 11, 10166 (2011).CrossRefGoogle Scholar
  22. 22.
    P. Camurlu and C. Gültekin, Sol. Energ. Mat. Sol. C. 107, 142 (2012).CrossRefGoogle Scholar
  23. 23.
    J. Xu, Y. Tian, R. Peng, Y. Xian, Q. Ran, and L. Jin, Electrochem. Commun. 11, 1972 (2009).CrossRefGoogle Scholar
  24. 24.
    S. Xiong, F. Yang, G. Ding, K.Y. Mya, J. Ma, and X. Lu, Electrochim. Acta 67, 194 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Xiong, J. Wei, P. Jia, L. Yang, J. Ma, and X. Lu, ACS Appl. Mater. Interf. 3, 782 (2011).CrossRefGoogle Scholar
  26. 26.
    S. Xiong, Y. Shi, C. Jia, M. Gong, B. Wu, and X. Wang, Electrochim. Acta 127, 139 (2014).CrossRefGoogle Scholar
  27. 27.
    C.R. Hauser, R.L. Pruett, and T.A. Mashburn Jr., J. Org. Chem. 26, 1800 (1961).CrossRefGoogle Scholar
  28. 28.
    T. Mochida, H. Shimizu, S. Suzuki, and T. Akasaka, J. Organomet. Chem. 691, 4882 (2006).CrossRefGoogle Scholar
  29. 29.
    H. Zhao, X. Zhu, D. Wang, S. Chen, and Z. Bian, Aust. J. Chem. 68, 1035 (2015).CrossRefGoogle Scholar
  30. 30.
    W. Yin and E. Ruckenstein, Synthetic Met. 108, 39 (2000).CrossRefGoogle Scholar
  31. 31.
    N. Kaur, S.N. Van, P. Singla, P. Kaur, K. Clays, and K. Singh, Dalton T. 46, 1124. (2017).Google Scholar
  32. 32.
    A.D. Ryabov, V.S. Kurova, V.N. Goral, M.D. Reshetova, J. Razumiene, R. Simkus, and V. Laurinavičius, Chem. Mater. 11, 600 (1999).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXi’an University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations