Journal of Electronic Materials

, Volume 47, Issue 7, pp 3969–3973 | Cite as

High-Temperature Annealing as a Method for the Silicon Nanoclusters Growth in Stoichiometric Silicon Dioxide

  • E. V. Ivanova
  • P. A. Dementev
  • A. A. Sitnikova
  • O. V. Aleksandrov
  • M. V. Zamoryanskaya


A method for the growth of nanocomposite layers in stoichiometric amorphous silicon dioxide is proposed. It is shown that, after annealing at a temperature of 1150°C in nitrogen atmosphere, a layer containing silicon nanoclusters is formed. Silicon nanoclusters have a crystal structure and a size of 3–6 nm. In a film grown on a n-type substrate, a layer of silicon nanoclusters with a thickness of about 10 nm is observed. In the case of a film grown on a p-type substrate, a nanocomposite layer with a thickness of about 100 nm is observed. The difference in the formation of a nanocomposite layer in films on various substrates is associated with the doping of silicon dioxide with impurities from the substrate during the growth of the film. The formation of the nanocomposite layer was confirmed by transmission electron microscopy, XPS and local cathodoluminescence studies.


Clusters crystal structure optical properties synchrotron radiation cathodoluminescence TEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Dutta, H. Hofmann, C. Hollestein, and H. Hofmeister, Nanoparticles and Nanostructured Films: Preparation, Characterization and Application, ed. J.H. Fendler (Germany: Wiley, 1998), p. 173.CrossRefGoogle Scholar
  2. 2.
    R.A. Bley and S.M. Kauzlarich, Nanoparticles and Nanostructured Films: Preparation, Characterization and Application, ed. J.H. Fendler (Germany: Wiley, 1998), p. 101.CrossRefGoogle Scholar
  3. 3.
    B.M. Monroy, G. Santana, J. Fandiõ, A. Ortiz, and J.C. Alonso, J. Nanosci. Nanotechnol. 6, 3752 (2006).CrossRefGoogle Scholar
  4. 4.
    P.R.J. Wilson, T. Roschuk, K. Dunn, E.N. Normand, E. Chelomentsev, O.H.Y. Zalloum, J. Wojcik, and P. Mascher, Nanoscale Res. Lett. 6, 168 (2011).CrossRefGoogle Scholar
  5. 5.
    E.W. Draeger, J.C. Grossman, A.J. Williamson, and G. Galli, Phys. Stat. Sol. (b) 239, 11 (2003).CrossRefGoogle Scholar
  6. 6.
    J. Dutta, R. Houriet, H. Hofmann, and H. Hofmeister, Nanostruct. Mater. 9, 359 (1997).CrossRefGoogle Scholar
  7. 7.
    Y. Wu, Y.I. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, and C.M. Lieber, Nano Lett. 4, 433 (2004).CrossRefGoogle Scholar
  8. 8.
    A.J. Adamczyk, M.F. Reyniers, G.B. Marin, and L.J. Broadbelt, Chem. Phys. Chem. 11, 1978 (2010).CrossRefGoogle Scholar
  9. 9.
    T. Muller, K.-H. Heinig, and W. Moller, Appl. Phys. Lett. 81, 3049 (2002).CrossRefGoogle Scholar
  10. 10.
    M.V. Zamoryanskaya, E.V. Ivanova, and A.A. Sitnikova, Phys. Solid State 53, 1474 (2011).CrossRefGoogle Scholar
  11. 11.
    E.V. Kolesnikova and M.V. Zamoryanskaya, Phys. B: Condens. Matter 404, 4653 (2009).CrossRefGoogle Scholar
  12. 12.
    L.N. Skuja and A.R. Silin, Physica Status Solidi (a) 70, 43 (1982).CrossRefGoogle Scholar
  13. 13.
    C.M. Gee and M. Kastner, J. Non-Cryst. Solids 40, 577 (1980).CrossRefGoogle Scholar
  14. 14.
    H.-J. Fitting, T. Barfels, A.N. Trukhin, B. Schmidt, A. Gulans, and A. Von Czarnovski, J. Non-Cryst. Solids 303, 218 (2002).CrossRefGoogle Scholar
  15. 15.
    L. Skuja, J. Non-Cryst. Solids 167, 229 (1994).CrossRefGoogle Scholar
  16. 16.
    L. Skuja, J. Non-Cryst. Solids 149, 77 (1992).CrossRefGoogle Scholar
  17. 17.
    V.N. Bogomolov, S.A. Gurevich, M.V. Zamoryanskaya, A.A. Sitnikova, I.P. Smirnova, and V.I. Sokolov, Phys. Solid State 43, 373 (2001).CrossRefGoogle Scholar
  18. 18.
    A.V. Boryakov, D.E. Nikolitchev, D.I. Tetelbaum, A.I. Belov, A.V. Ershov, and A.N. Mikhaylov, Phys. Solid State 54, 394 (2012).CrossRefGoogle Scholar
  19. 19.
    G.D. Sanders and Y.C. Chang, Phys. Rev. B 45, 9202 (1992).CrossRefGoogle Scholar
  20. 20.
    J. Wang, X.F. Wang, Q. Li, W. Hryciw, and A. Meldrum, Philos. Mag. 87, 11 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • E. V. Ivanova
    • 1
  • P. A. Dementev
    • 1
  • A. A. Sitnikova
    • 1
  • O. V. Aleksandrov
    • 2
  • M. V. Zamoryanskaya
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg Electrotechnical University “LETI”St. PetersburgRussia

Personalised recommendations