Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3963–3968 | Cite as

Environment-Friendly Post-Treatment of PEDOT-Tos Films by Aqueous Vitamin C Solutions for Tuning of Thermoelectric Properties

  • Ezaz Hasan Khan
  • Sammaiah Thota
  • Yiwen Wang
  • Lian Li
  • Eugene Wilusz
  • Richard Osgood
  • Jayant Kumar
Article
  • 61 Downloads

Abstract

Aqueous vitamin C solution has been used as an environment-friendly reducing agent for tuning the thermoelectric properties of p-toluenesulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-Tos) films. The de-doping of the PEDOT-Tos films by aqueous vitamin C solutions led to a decrease in the electrical conductivity of the films. The measured ultraviolet-visible-near-infrared and x-ray photoelectron spectra clearly indicated the reduction in the oxidation level from 37 to 23% when the PEDOT-Tos films were treated with 5% (w/v) aqueous vitamin C solutions. An increase in the Seebeck coefficient was measured, resulting in an increase in the figure-of-merit (ZT). A 42% increase in ZT was determined for the 5% aqueous vitamin C solution-treated PEDOT-Tos films with respect to that of the untreated films.

Keywords

Thermoelectric oxidation state tuning PEDOT-Tos vitamin C electrical conductivity Seebeck coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  2. 2.
    N. Toshima, Synth. Met. 225, 3 (2017).CrossRefGoogle Scholar
  3. 3.
    L.M. Cowen, J. Atoyo, M.J. Carnie, D. Baran, and B.C. Schroeder, ECS J. Solid State Sci. Technol. 6, 3080 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Peng, D. Wang, J. Lu, M. He, C. Xu, Y. Li, and S. Zhu, Journal of Polymers and the Environment, pp.1-11 (2016),  https://doi.org/10.1007/s10924-016-0895-z.
  5. 5.
    Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, Materials 8, 732 (2015).CrossRefGoogle Scholar
  6. 6.
    Y. Li, Y. Du, Y. Dou, K. Cai, and J. Xu, Synth. Met. 226, 119 (2017).CrossRefGoogle Scholar
  7. 7.
    A. Yoshida and N. Toshima, J. Electron. Mater. 45, 2914 (2016).CrossRefGoogle Scholar
  8. 8.
    C. Liu, F. Jiang, M. Huang, B. Lu, R. Yue, and J. Xu, J. Electron. Mater. 40, 948 (2011).CrossRefGoogle Scholar
  9. 9.
    G.H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).CrossRefGoogle Scholar
  10. 10.
    X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A.W. van der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. De Schryver, and W.R. Salaneck, J. Polym. Sci. Part B Polym. Phys. 41, 2561 (2013).CrossRefGoogle Scholar
  11. 11.
    H.L. Kwok, J. Electron. Mater. 41, 476 (2012).CrossRefGoogle Scholar
  12. 12.
    O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. 10, 429 (2011).CrossRefGoogle Scholar
  13. 13.
    T. Park, C. Park, B. Kim, H. Shin, and E. Kim, Energy Environ. Sci. 6, 788 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Wang, K. Cai, and S. Shen, Org. Electron. 17, 151 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Wang, K. Cai, and S. Shen, Org. Electron. 15, 3087 (2014).CrossRefGoogle Scholar
  16. 16.
    Z.U. Khan, O. Bubnova, M.J. Jafari, R. Brooke, X. Liu, R. Gabrielsson, T. Ederth, D.R. Evans, J.W. Andreasen, M. Fahlman, and X. Crispin, J. Mater. Chem. C 3, 10616 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Wang, K. Cai, H. Song, and S. Shen, Synth. Met. 220, 585 (2016).CrossRefGoogle Scholar
  18. 18.
    H.S. Gill, S. Thota, L. Li, H. Ren, R. Mosurkal, and J. Kumar, Sens. Actuators B Chem. 220, 794 (2015).CrossRefGoogle Scholar
  19. 19.
    J. Choi, D.A. Reddy, M.J. Islam, R. Ma, and T.K. Kim, J. Alloy Compd. 688, 527 (2016).CrossRefGoogle Scholar
  20. 20.
    Y.Y. Yu, B.H. Kang, Y.D. Lee, S.B. Lee, and B.K. Ju, Appl. Surf. Sci. 287, 91 (2013).CrossRefGoogle Scholar
  21. 21.
    D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, and S.H. Yoon, Langmuir 26, 16096 (2010).CrossRefGoogle Scholar
  22. 22.
    M.A. Mamo, A.O. Sustaita, N.J. Coville, and I.A. Hümmelgen, Org. Electron. 14, 175 (2013).CrossRefGoogle Scholar
  23. 23.
    S.B. Nimse and D. Pal, RSC Adv. 5, 27986 (2015).CrossRefGoogle Scholar
  24. 24.
    D.J. Lane and A. Lawen, BioFactors 34, 191 (2008).CrossRefGoogle Scholar
  25. 25.
    D.G. Cahill and R.O. Pohl, Phys. Rev. B 35, 4067 (1987).CrossRefGoogle Scholar
  26. 26.
    H.E. Katz and T.O. Poehler, Innovative Thermoelectric Materials, 1st edn. (Singapore: World Scientific, 2016)Google Scholar
  27. 27.
    S.H. Lee, H. Park, S. Kim, W. Son, I.W. Cheong, and J.H. Kim, J. Mater. Chem. A 2, 7288 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ezaz Hasan Khan
    • 1
  • Sammaiah Thota
    • 2
  • Yiwen Wang
    • 1
  • Lian Li
    • 2
    • 4
  • Eugene Wilusz
    • 4
  • Richard Osgood
    • 4
  • Jayant Kumar
    • 2
    • 3
  1. 1.Department of ChemistryUniversity of Massachusetts LowellLowellUSA
  2. 2.Center for Advanced MaterialsUniversity of Massachusetts LowellLowellUSA
  3. 3.Department of PhysicsUniversity of Massachusetts LowellLowellUSA
  4. 4.US Army Natick Soldier Research, Development and Engineering CenterNatickUSA

Personalised recommendations