Journal of Electronic Materials

, Volume 47, Issue 7, pp 3942–3950 | Cite as

Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low-k Films: A Surface Brillouin Scattering Study

  • J. Zizka
  • S. King
  • A. Every
  • R. Sooryakumar


To reduce the RC (resistance–capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson’s ratio, and Young’s modulus of these porous low-k SiOC:H films (∼ 25–250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.


Brilllouin light scattering low-k dielectrics ultra-thin films acoustic phonons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.W. King, H. Simka, D. Herr, H. Akinaga, and M. Garner, APL Mater. 1, 040701 (2013).CrossRefGoogle Scholar
  2. 2.
    M. Bohr, in Proceedings of the IEEE International Electronic Devices Meeting (1995), p. 241.Google Scholar
  3. 3.
    W. Volksen, R. Miller, and G. Dubois, Chem. Rev. 110, 56 (2010).CrossRefGoogle Scholar
  4. 4.
    K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, and Z.S. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003).CrossRefGoogle Scholar
  5. 5.
    A. Grill, Annu. Rev. Mater. Res. 39, 49 (2009).CrossRefGoogle Scholar
  6. 6.
    L. Prager, P. Marsik, L. Wenrich, M.R. Baklanov, S. Naumov, L. Pistol, D. Schneider, J.W. Gerlach, P. Verdonck, and M.R. Buchmesier, Microelectron. Eng. 85, 196 (2004).Google Scholar
  7. 7.
    M. Baklanov, J. de Marneffe, D. Shamiryan, A. Urbanowicz, H. Shi, T. Rakhimova, H. Huang, and P. Ho, J. Appl. Phys. 113, 041101 (2013).CrossRefGoogle Scholar
  8. 8.
    G. Stan, R.S. Gates, P. Kavuri, J. Torres, D. Michalak, D. Ege, J. Bielefeld, and S.W. King, Appl. Phys. Lett. 105, 152906 (2014).CrossRefGoogle Scholar
  9. 9.
    L. Kljucar, M. Gonzalez, I. De Wolf, K. Croes, J. Bommels, and Z. Tokei, Microelectron. Reliab. 56, 93 (2016).CrossRefGoogle Scholar
  10. 10.
    E. Andideh, M. Lerner, G. Palmrose, S. El-Mansy, T. Scherban, G. Xu, and J. Blaine, J. Vac. Sci. Technol. B 22, 196 (2004).CrossRefGoogle Scholar
  11. 11.
    A. Grill, J. Appl. Phys. 93, 1785 (2003).CrossRefGoogle Scholar
  12. 12.
    C.A. Yuan, O. Sluis, G.Q. Zhang, L.J. Ernst, W.D. Driel, R.B.R. Silfhout, and B.J. Thijsse, Comput. Mater. Sci. 42, 606 (2008).CrossRefGoogle Scholar
  13. 13.
    A. Volinksy, J. Vella, and W. Gerberich, Thin Solid Films 429, 201 (2003).CrossRefGoogle Scholar
  14. 14.
    M. Hussein and J. He, IEEE Trans. Semicond. Manuf. 18, 69 (2005).CrossRefGoogle Scholar
  15. 15.
    S.W. King and J.A. Gradner, Microelectron. Reliab. 49, 721 (2009).CrossRefGoogle Scholar
  16. 16.
    T. Scherban, B. Sun, J. Blaine, C. Block, B. Jin, and E. Andideh, in Proceedings of the IEEE International Interconnect Technology Conference (2001), p. 257.Google Scholar
  17. 17.
    E.G. Linger and E.E. Simonyi, J. Appl. Phys. 96, 3482 (2004).CrossRefGoogle Scholar
  18. 18.
    K. Yonekura, S. Sakamori, K. Goto, M. Matsuura, N. Fujiwara, and M. Yoneda, J. Vac. Sci. Technol. B 22, 548 (2004).CrossRefGoogle Scholar
  19. 19.
    W. Zhou, S. Bailey, R. Sooryakumar, S. King, G. Xu, E. Mays, C. Ege, and J. Bielefeld, J. Appl. Phys. 110, 043520 (2011).CrossRefGoogle Scholar
  20. 20.
    S. Bailey, E. Mays, D.J. Michalak, R. Chebiam, S. King, and R. Sooryakumar, J. Phys. D Appl. Phys. 46, 1 (2013).CrossRefGoogle Scholar
  21. 21.
    M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
  22. 22.
    H. Li, K. Lin, and C. Ege, J. Appl. Phys. 117, 115303 (2015).CrossRefGoogle Scholar
  23. 23.
    R.J. Nay, O.L. Warren, D. Yang, and T.J. Wyrobek, Microelectron. Eng. 75, 103 (2004).CrossRefGoogle Scholar
  24. 24.
    D. Morris and R. Cook, J. Mater. Res. 23, 2428 (2008).Google Scholar
  25. 25.
    B. Daly, S. Bailey, R. Sooryakymar, and S.W. King, J. Nanophotonics 7, 073094 (2013).CrossRefGoogle Scholar
  26. 26.
    G.W. Farnell and E.L. Adler, Physical Acoustics, vol. 9, ed. W.P. Mason and N. Thurston (New York: Academic Press, 1972), p. 35.Google Scholar
  27. 27.
    A. Link, R. Sooryakumar, R.S. Bandhu, and G.A. Antonelli, J. Appl. Phys. 100, 013507 (2006).CrossRefGoogle Scholar
  28. 28.
    J.D. Comins, Handbook of Elastic Properties of Solids, Liquids, and Gases, vol. 1, ed. M. Levy, H. Bass, and R. Stern (New York: Academic Press, 1972), p. 349.Google Scholar
  29. 29.
    M.G. Beghi, A.G. Every, V. Prakapenka, and P.V. Zinin, Ultrasonic and Electromagnetic NDE for Structure and Material Characterization, ed. T. Kundu (Boca Raton: CRC Press, 2012), p. 539.Google Scholar
  30. 30.
    X. Zhang, J.D. Comins, A.G. Every, P.R. Stoddart, W. Pang, and T.E. Derry, Phys. Rev. B 58, 13677 (1998).CrossRefGoogle Scholar
  31. 31.
    J.M. Karanikas and R. Sooryakumar, Phys. Rev. B 39, 1388(R) (1989).CrossRefGoogle Scholar
  32. 32.
    J. Zizka, S. King, A.G. Every, and R. Sooryakumar, J. Appl. Phys. 119, 144102 (2016).CrossRefGoogle Scholar
  33. 33.
    R. Loudon and J.R. Sandercock, J. Phys. C 13, 2609 (1980).CrossRefGoogle Scholar
  34. 34.
    A. Pinczuk and E. Burstein, Light Scattering in Solids, vol. 1, ed. M. Cardona (Heidelberg: Springer, 1983), p. 23.CrossRefGoogle Scholar
  35. 35.
    V. Rouessac, L. Favennec, B. Remiat, V. Jousseaume, G. Passemard, and J. Durand, Microelectron. Eng. 82, 333 (2005).CrossRefGoogle Scholar
  36. 36.
    V. Jousseaume, A. Zenasni, L. Favennec, G. Gerbaud, M. Bardet, J.P. Simon, and A. Humbert, J. Electrochem. Soc. 154, G103 (2007).CrossRefGoogle Scholar
  37. 37.
    M.R. Baklanov, K.P. Mogilnikov, V.G. Polovinkin, and F.N. Dultsev, J. Vac. Technol. B 18, 1385 (2000).CrossRefGoogle Scholar
  38. 38.
    S. King, R. Chu, G. Xu, and J. Huening, Thin Solid Films 518, 4898 (2010).CrossRefGoogle Scholar
  39. 39.
    X. Zhang, R. Sooryakumar, A.G. Every, and W.H. Manghnani, Phys. Rev. B 640, 081402 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsThe Ohio State UniversityColumbusUSA
  2. 2.Intel Corporation, Logic Technology DevelopmentHillsboroUSA
  3. 3.School of PhysicsUniversity of WitwatersrandJohannesburgSouth Africa

Personalised recommendations