Advertisement

Journal of Electronic Materials

, Volume 47, Issue 6, pp 3171–3176 | Cite as

Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

  • L. A. Konopko
  • A. A. Nikolaeva
  • A. K. Kobylianskaya
  • T. E. Huber
Topical Collection: International Conference on Thermoelectrics 2017
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2017

Abstract

Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type-n and type-p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10−2 V/W with a time constant τ of about 0.5 s.

Keywords

Thermoelectric device anisotropic thermoelement bismuth glass-insulated single-crystal microwire flat spiral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    D.M. Rowe, Modules, Systems, and Applications in Thermoelectrics (Boca Raton: CRC Press, 2012).CrossRefGoogle Scholar
  2. 2.
    M. Ki, M.S. Kim, S. Kim, C.Kim. Lee, and Y.J. Kim, Smart Mater. Struct. 23, 105002 (2014).CrossRefGoogle Scholar
  3. 3.
  4. 4.
    M. Kishi, Y. Yoshida, H. Okano, H. Nemoto, Y. Funanami, M. Yamamoto, and H. Kanazawa, in Proceedings ICT’97, pp. 653–656 (1997).Google Scholar
  5. 5.
    A.A. Snarskii, A.M. Palti, and A.A. Ascheulov, Fiz. Tekh. Poluprovod. 31, 1281 (1997).Google Scholar
  6. 6.
    A.A. Snarskii and L.P. Bulat, in Thermoelectrics Handbook: Macro to Nano, ed. by D.M. Rowe (CRC Press, New York, 2006), Ch. 45.Google Scholar
  7. 7.
    L.I. Anatychuk and A.V. Prybyla, J. Electron. Mater. 40, 1304 (2011).CrossRefGoogle Scholar
  8. 8.
    C. Zhou, Y. Tang, K. Heinselman, S. Birner, and M. Grayson, Phys. Rev. Lett. 110, 227701 (2013).CrossRefGoogle Scholar
  9. 9.
    Y. Tang, B. Cui, C. Zhou, and M. Grayson, J. Electron. Mater. 44, 2095 (2015).CrossRefGoogle Scholar
  10. 10.
    J.L. Cohn, S. Moshfeghyeganeh, C.A.M. dos Santos, and J.J. Neumeier, Phys. Rev. Lett. 112, 186602 (2014).CrossRefGoogle Scholar
  11. 11.
    X.H. Li, H.-U. Habermeier, and P.X. Zhang, J. Magn. Magn. Mater. 211, 232 (2000).CrossRefGoogle Scholar
  12. 12.
    K. Zhao, K.-J. Jin, Y.-H. Huang, H.-B. Lu, M. He, Z.-H. Chen, Y.-L. Zhou, and G.-Z. Yang, Phys. B 373, 72 (2006).CrossRefGoogle Scholar
  13. 13.
    T. Kanno, S. Yotsuhashi, and H. Adachi, Appl. Phys. Lett. 85, 739 (2004).CrossRefGoogle Scholar
  14. 14.
    T. Kanno, K. Takahashi, A. Sakai, H. Tamaki, H. Kusada, and Y. Yamada, J. Electron. Mater. 43, 2072 (2014).CrossRefGoogle Scholar
  15. 15.
    Z.H. He, Z.G. Ma, Q.Y. Li, Y.Y. Luo, J.X. Zhang, R.L. Meng, and C.W. Chu, Appl. Phys. Lett. 69, 3587 (1996).CrossRefGoogle Scholar
  16. 16.
    Th. Zahner, R. Schreiner, R. Stierstorfer, O. Kus, S.T. Li, R. Roessler, J.D. Pedarunig, D. Baüerle, and H. Lengfellner, Europhys. Lett. 40, 673 (1997).CrossRefGoogle Scholar
  17. 17.
    G. Yan, L. Wang, S. Qiao, X. Wu, S. Wang, and G. Fu, Opt. Mater. Express 6, 558 (2016).CrossRefGoogle Scholar
  18. 18.
    Th. Zahner, R. Forg, and H. Lengfellner, Appl. Phys. Lett. 73, 1364 (1998).CrossRefGoogle Scholar
  19. 19.
    H.J. Goldsmid, Introduction to Thermoelectricity (Berlin: Springer, 2010).CrossRefGoogle Scholar
  20. 20.
    V.S. Larin, A.V. Torcunov, A. Zhukov, J. González, M. Vazquez, and L. Panina, J. Magn. Magn. Mater. 249, 39 (2002).CrossRefGoogle Scholar
  21. 21.
    N. Brand, D. Gitsu, A. Nikolaeva, and Ya. Ponomarev, Sov. Phys. JETP 45, 1226 (1977).Google Scholar
  22. 22.
    D. Gitsu, L. Konopko, A. Nikolaeva, and T. Huber, Appl. Phys. Lett. 86, 102105 (2005).CrossRefGoogle Scholar
  23. 23.
    L. Konopko, A. Nikolaeva, T. Huber, and A. Tsurkan, in IFMBE Proceedings, vol 55, pp. 119–122 (2016).Google Scholar
  24. 24.
    D.M. Jacobson, Phys. Status Solidi B 58, 243 (1973).CrossRefGoogle Scholar
  25. 25.
    A. Mityakova, S. Sapozhnikov, V. Mityakov, A. Snarskii, M. Zhenirovsky, and J. Pyrhonena, Sensors Actuators A 176, 1 (2012).CrossRefGoogle Scholar
  26. 26.
    L. Konopko, A. Nikolaeva, P. Bodiul and A. Tsurkan, MD Patent No. 4333 (2015).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • L. A. Konopko
    • 1
  • A. A. Nikolaeva
    • 1
  • A. K. Kobylianskaya
    • 1
  • T. E. Huber
    • 2
  1. 1.Ghitu Institute of Electronic Engineering and NanotechnologyAcademy of Sciences of MoldovaChisinauRepublic of Moldova
  2. 2.Department of ChemistryHoward UniversityWashingtonUSA

Personalised recommendations