Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating
Abstract
Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type-n and type-p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10−2 V/W with a time constant τ of about 0.5 s.
Keywords
Thermoelectric device anisotropic thermoelement bismuth glass-insulated single-crystal microwire flat spiralPreview
Unable to display preview. Download preview PDF.
Notes
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.D.M. Rowe, Modules, Systems, and Applications in Thermoelectrics (Boca Raton: CRC Press, 2012).CrossRefGoogle Scholar
- 2.M. Ki, M.S. Kim, S. Kim, C.Kim. Lee, and Y.J. Kim, Smart Mater. Struct. 23, 105002 (2014).CrossRefGoogle Scholar
- 3.Thermic, Seiko Watches, THE SEIKO MUSEUM, http://museum.seiko.co.jp/en/collections/clock_watch/category3/collect041.html.
- 4.M. Kishi, Y. Yoshida, H. Okano, H. Nemoto, Y. Funanami, M. Yamamoto, and H. Kanazawa, in Proceedings ICT’97, pp. 653–656 (1997).Google Scholar
- 5.A.A. Snarskii, A.M. Palti, and A.A. Ascheulov, Fiz. Tekh. Poluprovod. 31, 1281 (1997).Google Scholar
- 6.A.A. Snarskii and L.P. Bulat, in Thermoelectrics Handbook: Macro to Nano, ed. by D.M. Rowe (CRC Press, New York, 2006), Ch. 45.Google Scholar
- 7.L.I. Anatychuk and A.V. Prybyla, J. Electron. Mater. 40, 1304 (2011).CrossRefGoogle Scholar
- 8.C. Zhou, Y. Tang, K. Heinselman, S. Birner, and M. Grayson, Phys. Rev. Lett. 110, 227701 (2013).CrossRefGoogle Scholar
- 9.Y. Tang, B. Cui, C. Zhou, and M. Grayson, J. Electron. Mater. 44, 2095 (2015).CrossRefGoogle Scholar
- 10.J.L. Cohn, S. Moshfeghyeganeh, C.A.M. dos Santos, and J.J. Neumeier, Phys. Rev. Lett. 112, 186602 (2014).CrossRefGoogle Scholar
- 11.X.H. Li, H.-U. Habermeier, and P.X. Zhang, J. Magn. Magn. Mater. 211, 232 (2000).CrossRefGoogle Scholar
- 12.K. Zhao, K.-J. Jin, Y.-H. Huang, H.-B. Lu, M. He, Z.-H. Chen, Y.-L. Zhou, and G.-Z. Yang, Phys. B 373, 72 (2006).CrossRefGoogle Scholar
- 13.T. Kanno, S. Yotsuhashi, and H. Adachi, Appl. Phys. Lett. 85, 739 (2004).CrossRefGoogle Scholar
- 14.T. Kanno, K. Takahashi, A. Sakai, H. Tamaki, H. Kusada, and Y. Yamada, J. Electron. Mater. 43, 2072 (2014).CrossRefGoogle Scholar
- 15.Z.H. He, Z.G. Ma, Q.Y. Li, Y.Y. Luo, J.X. Zhang, R.L. Meng, and C.W. Chu, Appl. Phys. Lett. 69, 3587 (1996).CrossRefGoogle Scholar
- 16.Th. Zahner, R. Schreiner, R. Stierstorfer, O. Kus, S.T. Li, R. Roessler, J.D. Pedarunig, D. Baüerle, and H. Lengfellner, Europhys. Lett. 40, 673 (1997).CrossRefGoogle Scholar
- 17.G. Yan, L. Wang, S. Qiao, X. Wu, S. Wang, and G. Fu, Opt. Mater. Express 6, 558 (2016).CrossRefGoogle Scholar
- 18.Th. Zahner, R. Forg, and H. Lengfellner, Appl. Phys. Lett. 73, 1364 (1998).CrossRefGoogle Scholar
- 19.H.J. Goldsmid, Introduction to Thermoelectricity (Berlin: Springer, 2010).CrossRefGoogle Scholar
- 20.V.S. Larin, A.V. Torcunov, A. Zhukov, J. González, M. Vazquez, and L. Panina, J. Magn. Magn. Mater. 249, 39 (2002).CrossRefGoogle Scholar
- 21.N. Brand, D. Gitsu, A. Nikolaeva, and Ya. Ponomarev, Sov. Phys. JETP 45, 1226 (1977).Google Scholar
- 22.D. Gitsu, L. Konopko, A. Nikolaeva, and T. Huber, Appl. Phys. Lett. 86, 102105 (2005).CrossRefGoogle Scholar
- 23.L. Konopko, A. Nikolaeva, T. Huber, and A. Tsurkan, in IFMBE Proceedings, vol 55, pp. 119–122 (2016).Google Scholar
- 24.D.M. Jacobson, Phys. Status Solidi B 58, 243 (1973).CrossRefGoogle Scholar
- 25.A. Mityakova, S. Sapozhnikov, V. Mityakov, A. Snarskii, M. Zhenirovsky, and J. Pyrhonena, Sensors Actuators A 176, 1 (2012).CrossRefGoogle Scholar
- 26.L. Konopko, A. Nikolaeva, P. Bodiul and A. Tsurkan, MD Patent No. 4333 (2015).Google Scholar