Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3902–3911 | Cite as

Growth, Crystal Structure, Theoretical Analysis and Properties of Te4+-Doped KTiOPO4

  • Lintao Liu
  • Qian Yao
  • Junying Zhang
  • Weimin Dong
  • Jing Li
  • Jiyang Wang
  • Robert I. Boughton
Article
  • 37 Downloads

Abstract

A single crystal of Te4+-doped KTiOPO4(Te:KTP) has been grown by the flux method. The electronic structure and density of states of KTiOPO4 (KTP) and Te:KTP were calculated from first principles. As the results reveal, there is no change in the space group or lattice structure of Te:KTP, but that some increase in lattice parameters occurred. The chemical composition of Te:KTP was analyzed using x-ray photoelectron spectroscopy (XPS). The possible existence of Ti3+ has been evaluated by measuring the electron paramagnetic resonance spectrum, and the results reveal that the ion is absent from this crystal. It was observed that Te4+ doping reduces the conductivity of the crystal from measurements of its conductivity at different temperatures and frequencies, indicating that Te:KTP has excellent electro-optical properties. The effect of Te4+ doping on the second harmonic generation in KTP was also studied. The thermal expansion, thermal diffusivity, thermal conductivity and specific heat capacity of KTP and Te:KTP were determined.

Keywords

Optical material crystal growth electronic band structure thermal conductivity thermal expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2018_6267_MOESM1_ESM.pdf (187 kb)
Supplementary material 1 (PDF 186 kb)

References

  1. 1.
    C.-L. Zhang, Z.-G. Hu, L.-X. Huang, W.-N. Zhou, G. Zhang, Y.-C. Liu, Y.-B. Zou, F.-H. Lu, H.-D. Hou, S.-J. Qin, H.-X. Zhang, and L. Bai, J. Cryst. Growth 310, 2010 (2008).CrossRefGoogle Scholar
  2. 2.
    A. Fakhruddin, Appl. Opt. 28, 119 (1989).CrossRefGoogle Scholar
  3. 3.
    J.D. Bierlein and C.B. Arweiler, Appl. Phys. Lett. 49, 917 (1986).CrossRefGoogle Scholar
  4. 4.
    J.Q. Yao, X. Ding, J.Y. Qiao, C.C. Yang, I.J. Hsu, and C.W. Hsu, Opt. Commun. 192, 407 (2001).CrossRefGoogle Scholar
  5. 5.
    G.M. Loiacono, T.F. McGee, and G. Kostecky, J. Cryst. Growth 104, 389 (1990).CrossRefGoogle Scholar
  6. 6.
    W. Ching and Y.N. Xu, Phys. Rev. B. 44, 5332 (1991).CrossRefGoogle Scholar
  7. 7.
    J.R. Gandhi, B. Vijayalakshmi, M. Rathnakumari, and P. Sureshkumar, J. Miner. Mater. Charact. Eng. 10, 683 (2011).Google Scholar
  8. 8.
    T.F. McGee, G.M. Blom, and G. Kostecky, J. Cryst. Growth 109, 353 (1991).CrossRefGoogle Scholar
  9. 9.
    P.A. Morris, A. Ferretti, J.D. Bierlein, and G.M. Loiacono, J. Cryst. Growth 109, 361 (1991).CrossRefGoogle Scholar
  10. 10.
    V.I. Voronkova, V.K. Yanovskii, T. Yu Losevskaya, and S. Yu Stefanovich, J. Appl. Phys. 94, 1954 (2003).CrossRefGoogle Scholar
  11. 11.
    P.A. Morris, A. Ferretti, and J.D. Bierlein, J. Cryst. Growth 109, 361 (1991).CrossRefGoogle Scholar
  12. 12.
    J.X. Zhang, J.Y. Wang, B.H. Ge, Y.G. Liu, X.B. Hu, G. Zhao, S.N. Zhu, and R.I. Boughton, Opt. Mater. 28, 355 (2006).CrossRefGoogle Scholar
  13. 13.
    K.T. Stevens, L.E. Halliburton, M. Roth, N. Angert, and M. Tseitlin, J. Appl. Phys. 88, 6239 (2000).CrossRefGoogle Scholar
  14. 14.
    S.-H. Kim, T. Yoko, and S. Sakka, J. Am. Ceram. Soc. 76, 2486 (1993).CrossRefGoogle Scholar
  15. 15.
    D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, J. Alloys Compd. 561, 151 (2013).CrossRefGoogle Scholar
  16. 16.
    L.V. Atroshchenko, L.P. Gal’chinetskii, S.N. Galkin, and V.D. Ryzhikov, J. Cryst. Growth 197, 475 (1999).CrossRefGoogle Scholar
  17. 17.
    P.S. Arun, B.P. Ranjith, and S.M.A. Shibli, Environ. Sci. Technol. 47, 2746 (2013).CrossRefGoogle Scholar
  18. 18.
    Y. Zhu, Y. Dai, K. Lai, and Z. Li, H B. J. Phys. Chem. C 117, 5593 (2013).CrossRefGoogle Scholar
  19. 19.
    L. Thulin and J. Guerra, Phys. Rev. B. 77, 1951121 (2008).CrossRefGoogle Scholar
  20. 20.
    D. Vanderbilt, Phys. Rev. B. 41, 7892 (1990).CrossRefGoogle Scholar
  21. 21.
    M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).CrossRefGoogle Scholar
  22. 22.
    R. Chen and C. Psersson, J. Appl. Phys. 112, 103708 (2012).CrossRefGoogle Scholar
  23. 23.
    V. Atuchin, V. Kesler, N. Maklakova, L. Pokrovsky, and V. Semenenko, Surf. Interface Anal. 34, 320 (2002).CrossRefGoogle Scholar
  24. 24.
    V.V. Atuchin, V.G. Kesler, G. Meng, and Z.S. Lin, J. Phys.: Condens. Matter 24, 405503 (2012).Google Scholar
  25. 25.
    V.V. Atuchin, V.G. Kesler, N.V. Pervukhina, and Z. Zhang, J. Elect. Spectr. Relat. Phenom. 152, 18–24 (2006).CrossRefGoogle Scholar
  26. 26.
    M.A. Salim, G.D. Khattak, N.T. Abet, and L.E. Wenger, J. Electron Spectrosc. Relat. Phenom. 128, 75 (2003).CrossRefGoogle Scholar
  27. 27.
    V.V. Atuchin, V.G. Kesler, N.Y. Maklakova, L.D. Pokrovsky, and V.N. Semenenko, Surf. Interface Anal. 34, 320 (2002).CrossRefGoogle Scholar
  28. 28.
    M.J. Martin, D. Bravo, R. Sole, F. Diaz, F.J. Lopez, and C. Zaldo, J. Appl. Phys. 76, 7510 (1994).CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, H. Wang, C. Ma, Y. Jia, J. Li, J. Wang, R. Boughton, and H. Jiang, J. Cryst. Growth 412, 67 (2015).CrossRefGoogle Scholar
  30. 30.
    M.G. Roelofs, J. Appl. Phys. 65, 4976 (1989).CrossRefGoogle Scholar
  31. 31.
    G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, A. Skliar, and M. Tseitlin, Appl. Phys. Lett. 76, 3798 (2000).CrossRefGoogle Scholar
  32. 32.
    S.K. Kurtz and T.T. Perry, J. Appl. Phys. 39, 3798 (1968).CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, H. Cong, H. Jiang, J. Li, and J. Wang, J. Cryst. Growth 423, 1 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Lintao Liu
    • 1
  • Qian Yao
    • 1
  • Junying Zhang
    • 1
  • Weimin Dong
    • 1
  • Jing Li
    • 1
  • Jiyang Wang
    • 1
  • Robert I. Boughton
    • 2
  1. 1.State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China
  2. 2.Department of Physics and AstronomyGreen State UniversityBowling GreenUSA

Personalised recommendations