Co-Precipitation Synthesis and Characterization of SrBi2Ta2O9 Ceramic

  • Mohamed Afqir
  • Amina Tachafine
  • Didier Fasquelle
  • Mohamed Elaatmani
  • Jean-Claude Carru
  • Abdelouahad Zegzouti
  • Mohamed Daoud
Open Access
Article
  • 21 Downloads

Abstract

Strontium bismuth tantalate (SrBi2Ta2O9) was synthesized by a co-precipitation method. The sample was characterized by x-ray powder diffraction patterns (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results of the dielectric properties are reported at room temperature. No secondary phases were found while heating the powder at 850°C and the pure SrBi2Ta2O9 phase was formed, as revealed by XRD. The characteristic bands for SrBi2Ta2O9 were observed by FTIR at approximately 619 cm−1 and 810 cm−1. SEM micrographs for the sample displayed thin plate-like grains. The grain size was less than 1 μm and the crystallite size of about 24 nm. Dielectric response at room temperature shows that the SrBi2Ta2O9 ceramic has low loss values, and the flattening of the dielectric constant at higher frequencies. The observed Curie temperature is comparable with those reported in the literature.

Keywords

SrBi2Ta2O9 co-precipitation dielectric 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

  1. 1.
    E.P. Kharitonova and V.I. Voronkova, Inorg. Mater. 43, 1340 (2007).CrossRefGoogle Scholar
  2. 2.
    V.A. Isupov, Inorg. Mater. 42, 1094 (2006).CrossRefGoogle Scholar
  3. 3.
    Q.-H. Li, M. Takahashi, T. Horiuchi, S. Wang, and S. Sakai, Semicond. Sci. Technol. 23, 45011 (2008).CrossRefGoogle Scholar
  4. 4.
    B. Li, L. Li, and X. Wang, Ceram. Int. 29, 351 (2003).CrossRefGoogle Scholar
  5. 5.
    W. Wang, H. Ke, J. Rao, M. Feng, and Y. Zhou, J. Alloys Compd. 504, 367 (2010).CrossRefGoogle Scholar
  6. 6.
    A.B. Panda, A. Tarafdar, A. Pathak, and P. Pramanik, Ceram. Int. 30, 715 (2004).CrossRefGoogle Scholar
  7. 7.
    F.F. Oliveira, S. Da Dalt, V.C. Sousa, and C.P. Bergmann, Powder Technol. 225, 239 (2012).CrossRefGoogle Scholar
  8. 8.
    H. Wang, J. Liu, M. Zhu, B. Wang, and H. Yan, Mater. Lett. 57, 2371 (2003).CrossRefGoogle Scholar
  9. 9.
    P. Nayak, T. Badapanda, and S. Panigrahi, J. Mater. Sci. Mater. Electron. 28, 625 (2017).CrossRefGoogle Scholar
  10. 10.
    I. Coondoo and A.K. Jha, Mater. Lett. 63, 48 (2009).CrossRefGoogle Scholar
  11. 11.
    V. Senthil, J. Mater. Sci. Mater. Electron. 27, 1602 (2016).CrossRefGoogle Scholar
  12. 12.
    I. Coondoo, A.K. Jha, and S.K. Agarwal, Ceram. Int. 33, 41 (2007).CrossRefGoogle Scholar
  13. 13.
    H. Mändar, J. Felsche, V. Mikli, and T. Vajakas, J. Appl. Crystallogr. 32, 345 (1999).CrossRefGoogle Scholar
  14. 14.
    S. Thankachan, B.P. Jacob, S. Xavier, and E.M. Mohammed, Phys. Scr. 87, 025701 (2013).CrossRefGoogle Scholar
  15. 15.
    B.R. Kannan and B.H. Venkataraman, J. Mater. Sci. Mater. Electron. 25, 4943 (2014).CrossRefGoogle Scholar
  16. 16.
    D. Kajewski, Z. Ujma, K. Szot, and M. Pawełczyk, Ceram. Int. 35, 2351 (2009).CrossRefGoogle Scholar
  17. 17.
    G.S. Murugan and K.B.R. Varma, J. Electroceramics 8, 37 (2002).CrossRefGoogle Scholar
  18. 18.
    C.H. Lu and S.K. Saha, Mater. Res. Bull. 35, 2135 (2000).CrossRefGoogle Scholar
  19. 19.
    V. Senthil, T. Badapanda, A. Chandrabose, and S. Panigrahi, Mater. Lett. 159, 138 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.-C. Carru, A. Zegzouti, and M. Daoud, Open J. Phys. Chem. 6, 42 (2016).CrossRefGoogle Scholar
  21. 21.
    I. Coondoo, A.K. Jha, and S.K. Agarwal, J. Eur. Ceram. Soc. 27, 253 (2007).CrossRefGoogle Scholar
  22. 22.
    S.U. Jan, A. Zeb, and S.J. Milne, J. Eur. Ceram. Soc. 36, 2713 (2016).CrossRefGoogle Scholar
  23. 23.
    G. Liu, S. Zhang, W. Jiang, and W. Cao, Mater. Sci. Eng. R 89, 1 (2015).CrossRefGoogle Scholar
  24. 24.
    E.P. Papadakis, J. Acoust. Soc. Am. 33, 1616 (1961).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Laboratoire des Sciences des Matériaux Inorganiques et leurs Applications, Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakechMorocco
  2. 2.Unité de Dynamique et Structure des Matériaux MoléculairesUniversité du Littoral- Côte d’OpaleCalaisFrance

Personalised recommendations