Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3869–3875 | Cite as

Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

  • X. Y. Yan
  • J. F. Peng
  • S. A. Yan
  • X. J. Zheng
Article
  • 37 Downloads

Abstract

The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (IV) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10–190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5–18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.

Keywords

GaN nanobelt field effect transistor C-AFM nanoelectromechanical switch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Li, Y. Bando, and D. Golberg, ACS Nano 4, 2422 (2010).CrossRefGoogle Scholar
  2. 2.
    T.J. Flack, B.N. Pushpakaran, and S.B. Bayne, J. Electron. Mater. 45, 2673 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Minary-Jolandan, R.A. Bernal, I. Kuljanishvili, V. Parpoil, and H.D. Espinosa, Nano Lett. 12, 970 (2012).CrossRefGoogle Scholar
  4. 4.
    M.A. Khayer and R.K. Lake, J. Appl. Phys. 108, 104503 (2010).CrossRefGoogle Scholar
  5. 5.
    W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, Nano Lett. 10, 3355 (2010).CrossRefGoogle Scholar
  6. 6.
    C.Y. Chen, G. Zhu, Y. Hu, J.W. Yu, J. Song, K.Y. Cheng, L.H. Peng, L.J. Chou, and Z.L. Wang, ACS Nano 6, 5687 (2012).CrossRefGoogle Scholar
  7. 7.
    S.-H. Phark, H. Kim, K.M. Song, P.G. Kang, H.S. Shin, and D.-W. Kim, J. Nanosci. Nanotechnol. 11, 1413 (2011).CrossRefGoogle Scholar
  8. 8.
    S. Fritze, A. Dadgar, H. Witte, A. Rohrbeck, A. Hoffmann, and A. Krost, Appl. Phys. Lett. 100, 011001 (2012).CrossRefGoogle Scholar
  9. 9.
    Y. Ohno and M. Kuzuhara, IEEE Trans. Electron Dev. 48, 517 (2001).CrossRefGoogle Scholar
  10. 10.
    Y. Yang, Q. Liao, J. Qi, W. Guo, and Y. Zhang, Phys. Chem. Chem. Phys. 12, 552 (2010).CrossRefGoogle Scholar
  11. 11.
    X.L. Feng, M.H. Matheny, C.A. Zorman, M. Mehregany, and M.L. Roukes, Nano Lett. 10, 2891 (2010).CrossRefGoogle Scholar
  12. 12.
    C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, and C. Hierold, Nano Lett. 6, 1449 (2006).CrossRefGoogle Scholar
  13. 13.
    S.J. Wang, G. Cheng, K. Cheng, X.H. Jiang, and Z.L. Du, Nanoscale Res. Lett. 6, 541 (2011).CrossRefGoogle Scholar
  14. 14.
    Z. Zhao, X. Pu, C. Han, C. Du, L. Li, C. Jiang, W. Hu, and Z.L. Wang, ACS Nano 9, 8578 (2015).CrossRefGoogle Scholar
  15. 15.
    D.X. Wu, H.B. Cheng, X.J. Zheng, X.Y. Wang, D. Wang, and J. Li, Chin. Phys. Lett. 32, 108102 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. Yang, J.J. Qi, Y.S. Gu, W. Guo, and Y. Zhang, Appl. Phys. Lett. 96, 123103 (2010).CrossRefGoogle Scholar
  17. 17.
    I. Lopez-Salido, D.C. Lim, and Y.D. Kim, Surf. Sci. 588, 6 (2005).CrossRefGoogle Scholar
  18. 18.
    C.H. Qiu and J.I. Pankove, Appl. Phys. Lett. 70, 1983 (1997).CrossRefGoogle Scholar
  19. 19.
    S.Y. Bae, H.W. Seo, J. Park, H. Yang, and S.A. Song, Chem. Phys. Lett. 365, 525 (2002).CrossRefGoogle Scholar
  20. 20.
    J.R. Kim, H.M. So, J.W. Park, J.J. Kim, J. Kim, C.J. Lee, and S.C. Lyu, Appl. Phys. Lett. 80, 3548 (2002).CrossRefGoogle Scholar
  21. 21.
    H. Zhong, Z. Liu, L. Shi, G. Xu, Y. Fan, and Z. Huang, Appl. Phys. Lett. 104, 212101 (2014).CrossRefGoogle Scholar
  22. 22.
    F.A. Padovani and R. Stratton, Solid State Electron. 9, 695 (1966).CrossRefGoogle Scholar
  23. 23.
    S.Y. Lee and S.K. Lee, Nanotechnology 18, 495701 (2007).CrossRefGoogle Scholar
  24. 24.
    Z.L. Wang, J. Phys. Chem. Lett. 1, 1388 (2010).CrossRefGoogle Scholar
  25. 25.
    C.S. Lao, J. Liu, P. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z.L. Wang, Nano Lett. 6, 263 (2006).CrossRefGoogle Scholar
  26. 26.
    H. He, C.L. Hsin, J. Liu, L.J. Chen, and Z.L. Wang, Adv. Mater. 19, 781 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • X. Y. Yan
    • 1
  • J. F. Peng
    • 1
    • 2
    • 3
  • S. A. Yan
    • 1
    • 2
    • 3
  • X. J. Zheng
    • 1
    • 2
    • 3
  1. 1.School of Mechanical EngineeringXiangtan UniversityXiangtanPeople’s Republic of China
  2. 2.Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of EducationXiangtan UniversityXiangtanPeople’s Republic of China
  3. 3.Key Laboratory of Welding Robot and Application Technology of Hunan ProvinceXiangtan UniversityXiangtanPeople’s Republic of China

Personalised recommendations