Skip to main content
Log in

Optical Modulation of BST/STO Thin Films in the Terahertz Range

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The \( {\hbox{Ba}}_{0.7} {\hbox{Sr}}_{0.3} {\hbox{TiO}}_{3} \) (BST) thin film (30.3 nm) deposited on a\( {\hbox{SrTiO}}_{3} \) (STO) film/silicon substrate sample was modulated by 532 nm continuous-wave laser in the range of 0.2–1 THz at room temperature. The refractive index variation was observed to linearly increase at the highest 3.48 for 0.5 THz with the pump power increasing to 400 mW. It was also found that the BST/STO sample had a larger refractive index variation and was more sensitive to the external optical field than a BST monolayer due to the epitaxial strain induced by the STO film. The electric displacement–electric field loops results revealed that the increasing spontaneous polarization with the STO film that was induced was responsible for the larger refractive index variation of the BST/STO sample. In addition, the real and imaginary part of the permittivity were observed increasing along with the external field increasing, due to the soft mode hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Seeds, H. Shams, M.J. Fice, and C.C. Renaud, J. Lightwave Technol. 33, 579 (2015).

    Article  Google Scholar 

  2. W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, Opt. Lett. 40, 3185 (2015).

    Article  Google Scholar 

  3. R. Jiang, Z. Han, W. Sun, X. Du, Z. Wu, and H.-S. Jung, Appl. Phys. Lett. 107, 151105 (2015).

    Article  Google Scholar 

  4. Y. Bai, T. Bu, K. Chen, and S. Zhuang, Appl. Spectrosc. Rev. 50, 707 (2015).

    Article  Google Scholar 

  5. J. Petzelt and S. Kamba, Ferroelectrics 503, 19 (2016).

    Article  Google Scholar 

  6. V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, Phys. Rev. B. 90, 174105 (2014).

    Article  Google Scholar 

  7. Z. Quan, H. Hu, S. Guo, W. Liu, S. Xu, H. Huang, B. Sebo, G. Fang, M. Li, and X. Zhao, Appl. Surf. Sci. 255, 9045 (2009).

    Article  Google Scholar 

  8. P. Marsik, K. Sen, J. Khmaladze, M. Yazdi-Rizi, B.P.P. Mallett, and C. Bernhard, Appl. Phys. Lett. 108, 052901 (2016).

    Article  Google Scholar 

  9. S. Schmitz and H. Schroeder, Integr. Ferroelectr. 46, 233 (2010).

    Article  Google Scholar 

  10. Z.-G. Zuo, F.-R. Ling, D.A.N. Li, J.-S. Liu, and J.-Q. Yao, Mod. Phys. Lett. B 27, 1350066 (2013).

    Article  Google Scholar 

  11. D.A. Tenne, A. Soukiassian, X.X. Xi, T.R. Taylor, P.J. Hansen, J.S. Speck, and R.A. York, Appl. Phys. Lett. 85, 4124 (2004).

    Article  Google Scholar 

  12. Y.H. Gao, J.H. Ma, T.X. Li, J.L. Sun, X.J. Meng, and J.H. Chu, J. Phys. D Appl. Phys. 41, 085305 (2008).

    Article  Google Scholar 

  13. L. Wu, H. Li, L. Jiang, C. Ding, Q. Sheng, X. Ding, and J. Yao, Opt. Mater. Express 4, 2595 (2014).

    Article  Google Scholar 

  14. J. Xu, W. Menesklou, and E. Ivers-Tiffée, J. Eur. Ceram. Soc. 24, 1735 (2004).

    Article  Google Scholar 

  15. K. Terai, M. Lippmaa, P. Ahmet, T. Chikyow, H. Koinuma, M. Ohtani, and M. Kawasaki, Appl. Surf. Sci. 223, 183 (2004).

    Article  Google Scholar 

  16. C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, Phys. Rev. B. 80, 174116 (2009).

    Article  Google Scholar 

  17. C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, J. Alloys Compd. 687, 458 (2016).

    Article  Google Scholar 

  18. P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, Appl. Phys. Lett. 88, 102901 (2006).

    Article  Google Scholar 

  19. J. Yu, Z.M. Huang, X.J. Meng, J.L. Sun, J.H. Chu, and D.Y. Tang, Appl. Phys. Lett. 78, 793 (2001).

    Article  Google Scholar 

  20. D. Nuzhnyy, J. Petzelt, S. Kamba, P. Kužel, C. Kadlec, V. Bovtun, M. Kempa, J. Schubert, C.M. Brooks, and D.G. Schlom, Appl. Phys. Lett. 95, 232902 (2009).

    Article  Google Scholar 

  21. S. Kamba, M. Kempa, V. Bovtun, J. Petzelt, K. Brinkman, and N. Setter, J. Phys. Condens. Matter 17, 3965 (2005).

    Article  Google Scholar 

  22. P.K.M. Kempa, S. Kamba, P. Samoukhina, J. Petzelt, A. Garg, and Z.H. Barber, J. Phys. Condens. Matter 15, 8095 (2003).

    Article  Google Scholar 

  23. F.S. Chen, J. Appl. Phys. 40, 3389 (1969).

    Article  Google Scholar 

  24. M. Zhu, Z. Du, Q. Liu, B. Chen, S.H. Tsang, and E.H.T. Teo, Appl. Phys. Lett. 108, 233502 (2016).

    Article  Google Scholar 

  25. B. Fischer, M. Cronin-Golomb, J.O. White, A. Yariv, and R. Neurgaonkar, Appl. Phys. Lett. 40, 863 (1982).

    Article  Google Scholar 

  26. C. Ederer and N.A. Spaldin, Phys. Rev. Lett. 95, 257601 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furi Ling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Shi, S., Zhou, L. et al. Optical Modulation of BST/STO Thin Films in the Terahertz Range. J. Electron. Mater. 47, 3855–3860 (2018). https://doi.org/10.1007/s11664-018-6259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6259-9

Keywords

Navigation