Journal of Electronic Materials

, Volume 47, Issue 9, pp 5013–5018 | Cite as

Electrical Characterization of Defects Created by γ-Radiation in HfO2-Based MIS Structures for RRAM Applications

  • H. García
  • M. B. González
  • M. M. Mallol
  • H. Castán
  • S. Dueñas
  • F. Campabadal
  • M. C. Acero
  • L. Sambuco Salomone
  • A. Faigón
Topical Collection: 17th Conference on Defects (DRIP XVII)
Part of the following topical collections:
  1. 17th Conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP XVII)


The γ-radiation effects on the electrical characteristics of metal–insulator-semiconductor capacitors based on HfO2, and on the resistive switching characteristics of the structures have been studied. The HfO2 was grown directly on silicon substrates by atomic layer deposition. Some of the capacitors were submitted to a γ ray irradiation using three different doses (16 kGy, 96 kGy and 386 kGy). We studied the electrical characteristics in the pristine state of the capacitors. The radiation increased the interfacial state densities at the insulator/semiconductor interface, and the slow traps inside the insulator near the interface. However, the leakage current is not increased by the irradiation, and the conduction mechanism is Poole–Frenkel for all the samples. The switching characteristics were also studied, and no significant differences were obtained in the performance of the devices after having been irradiated, indicating that the fabricated capacitors present good radiation hardness for its use as a RS element.


Resistive switching γ-irradiation high-k dielectrics electrical characterization hafnium oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Manikanthababu, N. Arun, M. Dhanunjaya, V. Saikiran, S.V.S. Nageswara Rao, and A.P. Pathak, Radiat. Eff. Defects Solids 170, 207 (2015).Google Scholar
  2. 2.
    R.A.B. Devine, T. Busani, M. Quevedo-Lopez, and H.N. Alshareef, J. Appl. Phys. 101, 104101 (2007).CrossRefGoogle Scholar
  3. 3.
    D.K. Chen, R.D. Shrimpf, D.M. Fleetwood, K.F. Galloway, S.T. Pantelides, A. Dimoulas, G. Mavrou, A. Sotiropoulos, and Y. Panayiotatos, IEEE Trans. Nucl. Sci. 54, 971 (2007).CrossRefGoogle Scholar
  4. 4.
    V.V. Afanas’ev and A. Stesmans, J. Appl. Phys. 95, 2518 (2004).CrossRefGoogle Scholar
  5. 5.
    S. Maurya, J. Matter. Sci.-Mater. Electron. 27, 12796 (2016).CrossRefGoogle Scholar
  6. 6.
    I. Tascioglu, A. Tataroglu, A. Ozbay, and S. Altindal, Radiat. Phys. Chem. 79, 457 (2010).CrossRefGoogle Scholar
  7. 7.
    D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).CrossRefGoogle Scholar
  8. 8.
    T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, and S.M. Sze, Mater. Today 19, 254 (2016).CrossRefGoogle Scholar
  9. 9.
    D.C. Kim, S. Seo, S.E. Ahn, D.-S. Shu, M.J. Lee, B.-H. Park, I.K. Yoo, I.G. Baek, H.-J. Kim, R.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U.-I. Chung, J.T. Moon, and B.I. Ryu, Appl. Phys. Lett. 88, 202102 (2006).CrossRefGoogle Scholar
  10. 10.
    T.-Y. Huang, F.-C. Hong, T.-S. Chao, H.-C. Lin, L.-Y. Leu, K. Young, C.-H. Lin, and K.Y. Chiu, IEEE Trans. Nucl. Sci. 19, 256 (1998).Google Scholar
  11. 11.
    K. Agashe, N. Sarwade, S. Joshi, M. Thakurdesai, S. Surwase, P. Tirmali, and A. Asokan, Nucl. Instrum. Methods Phys. Res. B 403, 38 (2017).CrossRefGoogle Scholar
  12. 12.
    W. Duan, J. Wang, and X. Zhong, Europhys. Lett. 119, 27003 (2017).CrossRefGoogle Scholar
  13. 13.
    S.-H. Lin, Y.-L. Wu, Y.-H. Hwang, and J.-J. Lin, Microelectron. Reliab. 55, 2224 (2015).CrossRefGoogle Scholar
  14. 14.
    R. Fang, Y. Gonzalez Velo, W. Chen, K.E. Holbert, M.N. Kozicki, H. Barnaby, and S. Yu, Appl. Phys. Lett. 104, 183507 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Li, L. Han, and Z. Chen, J. Electrochem. Soc. 157, G221 (2010).CrossRefGoogle Scholar
  16. 16.
    S.A. Campbell, K.H. Lee, H.H. Li, R. Nachman, and F. Cerrina, Appl. Phys. Lett. 63, 1646 (1993).CrossRefGoogle Scholar
  17. 17.
    V. Singh, N. Shashank, S.K. Sharma, R.S. Shekhawat, D. Kumar, and R.K. Nahar, Nucl. Instrum. Methods Phys. Res. B 269, 2765 (2011).CrossRefGoogle Scholar
  18. 18.
    S. Maruya, in AIP conference Proceedings vol. 1731 (2016), pp. 120034 (1–3).Google Scholar
  19. 19.
    C.W. Wang, S.F. Chen, and G.T. Chen, J. Appl. Phys. 91, 9198 (2002).CrossRefGoogle Scholar
  20. 20.
    L. He, H. Hasegawa, T. Sawada, and H. Ohno, J. Appl. Phys. 63, 2120 (1988).CrossRefGoogle Scholar
  21. 21.
    H. García, S. Castán, L. Dueñas, F. Bailón, J.M. Campabadal, M. Rafi, O. Zabala, H. Beldarrain, K.Takakura Ohyama, and I. Tsunoda, Thin Solid Films 534, 482 (2013).CrossRefGoogle Scholar
  22. 22.
    H. García, S. Dueñas, H. Castán, A. Gómez, L. Bailón, R. Barquero, K. Kukli, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol. B 27, 416 (2009).CrossRefGoogle Scholar
  23. 23.
    S. Dueñas, H. Castán, H. García, A. Gómez, L. Bailón, M. Toledano-Luque, I. Mártil, and G. González-Díaz, Semicond. Sci. Technol. 22, 1344 (2007).CrossRefGoogle Scholar
  24. 24.
    O. Mitrofanov and M. Manfra, J. Appl. Phys. 95, 6414 (2004).CrossRefGoogle Scholar
  25. 25.
    C. Vaca, M.B. González, H. Castán, H. García, S. Dueñas, F. Campabadal, E. Miranda, and L. Bailón, IEEE Trans. Electron Dev. 63, 1877 (2016).CrossRefGoogle Scholar
  26. 26.
    K.L. Lin, T.H. Hou, J. Shieh, J.H. Lin, C.T. Chou, and Y.J. Lee, J. Appl. Phys. 109, 084104 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Dpto. Electricidad y Electrónica. E.T.S.I. TelecomunicaciónUniversidad de ValladolidValladolidSpain
  2. 2.Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC)BellaterraSpain
  3. 3.Laboratorio de Física de Dispositivos-Microelectrónica, Facultad de IngenieríaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations