Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3817–3828 | Cite as

Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles

  • F. I. Shaikh
  • L. P. Chikhale
  • D. Y. Nadargi
  • I. S. Mulla
  • S. S. Suryavanshi
Article
  • 47 Downloads

Abstract

We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (∼ 92%) at an operating temperature of 300°C with better selectivity, fast response (∼ 13 s) and recovery (∼ 22 s) towards ethanol.

Graphical Abstract

The concise representation of conducted work: (a) EDAX, (b) ethanol sensing mechanism, (c) sensor response, and (d) SEM image of Dy: SnO2 nanoparticles.

Keywords

Dysprosium tin oxide ethanol sensor thick films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.A. Papadopoulos, D.S. Vlaehos, and J.N. Avaritsiotis, Sens. Actuators B Chem. 32, 61 (1996).CrossRefGoogle Scholar
  2. 2.
    C. Wang and P. Sahay, Sensors 9, 8230 (2009).CrossRefGoogle Scholar
  3. 3.
    K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Sens. Actuators B Chem. 160, 580 (2011).CrossRefGoogle Scholar
  4. 4.
    K. Brudzewski, S. Osowski, and W. Pawlowski, Sens. Actuators B Chem. 161, 528 (2012).CrossRefGoogle Scholar
  5. 5.
    P. Mielle and F. Marquis, Sens. Actuators B Chem. 76, 470 (2001).CrossRefGoogle Scholar
  6. 6.
    W.J. Fleming, IEEE Sens. 1, 296 (2001).CrossRefGoogle Scholar
  7. 7.
    G. Neri, A. Bonavita, G. Micali, N. Donato, F.A. Deorsola, P. Mossino, I. Amato, and B. De Benedetti, Sens. Actuators B Chem. 117, 196 (2006).CrossRefGoogle Scholar
  8. 8.
    B.P.J. de Lacy Costello, R.J. Ewen, N. Guernion, and N.M. Ratcliffe, Sens. Actuators B Chem. 87, 207 (2002).CrossRefGoogle Scholar
  9. 9.
    N.V. Hieu, N.A.P. Duc, T. Trung, M.A. Tuan, and N.D. Chien, Sens. Actuators B Chem. 144, 450 (2010).CrossRefGoogle Scholar
  10. 10.
    C.C. Pang, M.H. Chen, T.Y. Lin, and T.C. Chou, Sens. Actuators B Chem. 73, 221 (2001).CrossRefGoogle Scholar
  11. 11.
    G. Korotcenkov, Mater. Sci. Eng., B 139, 1 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Chaisitsak, Sensors 11, 7127 (2011).CrossRefGoogle Scholar
  13. 13.
    S.K. Gupta, A. Joshi, and M.J. Kaur, Chem. Sci. 122, 57 (2010).CrossRefGoogle Scholar
  14. 14.
    D. Wang, J. Jin, D. Xia, Q. Ye, and J. Long, Sens. Actuators B Chem. 66, 260 (2000).CrossRefGoogle Scholar
  15. 15.
    A.P. Maciel, P.N. Lisboa-Filho, E.R. Leite, C.O. Paiva-Santos, W.H. Schreiner, Y. Maniette, and E. Longo, J. Eur. Ceram. Soc. 23, 707 (2003).CrossRefGoogle Scholar
  16. 16.
    G.T. Ang, G. HoonToh, M.Z. Abu Bakar, A.Z. Abdullah, and M.R. Othman, Process Saf. Environ. Prot. 89, 186 (2011).CrossRefGoogle Scholar
  17. 17.
    H. Zhang, Z. Li, L. Liu, X. Xu, Z. Wang, W. Wang, W. Zheng, and B. Dong, Sens. Actuators B Chem. 147, 111 (2010).CrossRefGoogle Scholar
  18. 18.
    M. Hubner, S. Hafner, N. Barsan, and U. Weimar, Sens. Proc. Eng. 25, 104 (2011).CrossRefGoogle Scholar
  19. 19.
    T.T. Wang, S.Y. Ma, L. Cheng, J. Luo, X.H. Jiang, and W.X. Jin, Sens. Actuators B Chem. 216, 212 (2015).CrossRefGoogle Scholar
  20. 20.
    S.M. Kanan, O.M. El-Kadri, I.A. Abu-Yousef, and M.C. Kanan, Sensors 9, 8158 (2009).CrossRefGoogle Scholar
  21. 21.
    L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, Sens. Actuators B Chem. 162, 237 (2012).CrossRefGoogle Scholar
  22. 22.
    C. Liewhiran and S. Phanichphant, Sensors 7, 1159 (2006).CrossRefGoogle Scholar
  23. 23.
    Y.I. Lee, K.J. Lee, D.H. Lee, Y.K. Jeong, H.S. Lee, and Y.H. Choa, Curr. Appl. Phys. 9, 579 (2009).Google Scholar
  24. 24.
    Z. Tianshu, P. Hing, Y. Liand, and Z. Jiancheng, Sens. Actuators B Chem. 60, 208 (1999).CrossRefGoogle Scholar
  25. 25.
    K. Galatsis, L. Cukrov, W. Wlodarski, P. McCormick, K. Kalantar-zadeh, E. Comini, and G. Sberveglieri, Sens. Actuators B Chem. 93, 562 (2003).CrossRefGoogle Scholar
  26. 26.
    C. Liewhiran and S. Phanichphant, Sensors 7, 1159 (2006).CrossRefGoogle Scholar
  27. 27.
    S.C. Tsang and C. Bulpitt, Sens. Actuators B Chem. 52, 226 (1998).CrossRefGoogle Scholar
  28. 28.
    S. Matsushima, T. Maekawal, J. Tamaki, N. Miura, and N. Uamazoe, Chem. Lett. 18, 845 (1989).CrossRefGoogle Scholar
  29. 29.
    F.I. Shaikh, L.P. Chikhale, I.S. Mulla, and S.S. Suryavanshi, J. Mater. Sci.: Mater. Electron. 28, 43128 (2017).Google Scholar
  30. 30.
    F.I. Shaikh, L.P. Chikhale, I.S. Mulla, and S.S. Suryavanshi, Powder Technol. 326, 479 (2018).CrossRefGoogle Scholar
  31. 31.
    F.J. Berry and A.G. Maddock, Radiochim. Acta 24, 32 (1977).CrossRefGoogle Scholar
  32. 32.
    S.K. Pillai, L.M. Sikhwivhilu, and T.K. Hillie, Mater. Chem. Phys. 120, 619 (2010).CrossRefGoogle Scholar
  33. 33.
    L.K. Bagal, J.Y. Patil, I.S. Mulla, and S.S. Suryavanshi, Ceram. Int. 38, 4835 (2012).CrossRefGoogle Scholar
  34. 34.
    L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, and W.L. Zhou, J. Alloys Compd. 454, 261 (2008).CrossRefGoogle Scholar
  35. 35.
    P.S. Peercy and B. Morosin, Phys. Rev. B 7, 2779 (1973).CrossRefGoogle Scholar
  36. 36.
    C.H. Shek, G.M. Lin, and J.K.L. Lai, Nanostruct. Mater. 11, 831 (1999).CrossRefGoogle Scholar
  37. 37.
    K.N. Yu, Y.H. Xiong, Y.L. Liu, and C.S. Xiong, Phys. Rev. B 55, 2666 (1997).CrossRefGoogle Scholar
  38. 38.
    A. Dieguez, A. Ramano-Rodrigues, A. Vila, and J.R. Morante, J. Appl. Phys. 90, 1550 (2001).CrossRefGoogle Scholar
  39. 39.
    L.P. Chikhale, F.I. Shaikh, I.S. Mulla, and S.S. Suryavanshi, Ceram. Int. 43, 10307 (2017).CrossRefGoogle Scholar
  40. 40.
    X. Niu, H. Zhong, X. Wang, and K. Jiang, Sens. Actuators, B 115, 434 (2006).CrossRefGoogle Scholar
  41. 41.
    Z. Wang and L. Liu, Mater. Lett. 63, 917 (2009).CrossRefGoogle Scholar
  42. 42.
    F.I. Shaikh, L.P. Chikhale, I.S. Mulla, and S.S. Suryavanshi, J. Rare Earths 35, 813 (2017).CrossRefGoogle Scholar
  43. 43.
    Y.G. Li, L. Qiao, L.L. Wang, Y. Zeng, W.Y. Fu, and H.B. Yang, Appl. Surf. Sci. 285, 130 (2013).CrossRefGoogle Scholar
  44. 44.
    B.B. Wang, X.X. Fu, F. Liu, S.L. Shi, J.P. Cheng, and X.B. Zhang, J. Alloys Compd. 587, 82 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • F. I. Shaikh
    • 1
  • L. P. Chikhale
    • 1
  • D. Y. Nadargi
    • 1
  • I. S. Mulla
    • 2
  • S. S. Suryavanshi
    • 1
  1. 1.School of Physical SciencesSolapur UniversitySolapurIndia
  2. 2.Former Emeritus ScientistCouncil of Scientific and Industrial ResearchNew DelhiIndia

Personalised recommendations