Evolution of the Thermal Conductivity of Sintered Silver Joints with their Porosity Predicted by the Finite Element Analysis of Real 3D Microstructures

  • L. Signor
  • P. Kumar
  • B. Tressou
  • C. Nadot-Martin
  • José Miranda-Ordonez
  • J. Carr
  • K. Joulain
  • X. Milhet
Article
  • 9 Downloads

Abstract

Silver paste sintering is a very promising technology for chip bonding in future power electronics modules owing to its high melting temperature and the good electrical and thermal properties among other classic solder alloys. However, in its sintered form, these joints contain nanometric/submicrometric pores that affect their thermal performance. The present study gives insight into the relationship between the material thermal conductivity and the real three-dimensional porous structure using finite element modelling. It is shown that over a certain pore fraction threshold (∼ 13%), the pore morphology has a non-negligible influence on the thermal conductivity. Results are also compared to predictions obtained by analytical models available in the literature.

Keywords

Silver sintering power electronics porosity effective thermal conductivity finite element modeling (computational homogenization) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Milhet, P. Gadaud, V. Caccuri, D. Bertheau, D. Mellier, and M. Gerland, J. Electron. Mater. 44, 3948 (2015).CrossRefGoogle Scholar
  2. 2.
    V. Caccuri, X. Milhet, P. Gadaud, D. Bertheau, and M. Gerland, J. Electron. Mater. 43, 4510 (2014).CrossRefGoogle Scholar
  3. 3.
    J. Carr, X. Milhet, P. Gadaud, S.A.E. Boyer, G.E. Thompson, and P.D. Lee, J. Mater. Process. Technol. 225, 19 (2015).CrossRefGoogle Scholar
  4. 4.
    C. Chen, S. Nagao, H. Zhang, J. Jiu, T. Sugahara, K. Saganuma, T. Iwashige, K. Sugiura, and K. Tsuruta, J. Electron. Mater. 129, 1576 (2017).CrossRefGoogle Scholar
  5. 5.
    S. Zabihzadeh, S. Van Petegem, M. Holler, A. Diaz, L.I. Duarte, and H. Van Swygenhoven, Acta Mater. 131, 467 (2017).CrossRefGoogle Scholar
  6. 6.
    P. Gadaud, V. Caccuri, D. Bertheau, J. Carr, and X. Milhet, Mater. Sci. Eng., A 669, 379 (2016).CrossRefGoogle Scholar
  7. 7.
    R. Dou, B. Xu, and B. Derby, Scripta Mater. 63, 308 (2010).CrossRefGoogle Scholar
  8. 8.
    N. Alayli, F. Schoenstein, A. Girard, K.L. Tan, and P.R. Dahoo, Mater. Chem. Phys. 148, 125 (2014).CrossRefGoogle Scholar
  9. 9.
    T. Youssef, W. Rmili, E. Woirgard, S. Azzopardi, N. Vivet, D. Martineau, R. Meuret, G. Le Quiliec, and C. Richard, Microelectron. Reliab. 55, 1997 (2015).CrossRefGoogle Scholar
  10. 10.
    A.A. Wereszczak, D.J. Vuono, H. Wang, and M.K. Ferber, Oak Ridge National Laboratory, TN report no ORNL/TM-2012/130.Google Scholar
  11. 11.
    J. Ordonez-Miranda, M. Hermens, I. Nikitin, V.G. Kouznetsova, O. Van der Sluis, M. Abo Ras, J.S. Reparaz, M.R. Wagner, M. Sledzinka, J. Gomis-Bresco, C.M. Sotomayor Torres, B. Wunderle, and S. Volz, Int. J. Therm. Sci. 108, 185 (2016).CrossRefGoogle Scholar
  12. 12.
    T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Int. J. Solids Struct. 40, 3647 (2003).CrossRefGoogle Scholar
  13. 13.
    A. El Moumen, T. Kanit, A. Imald, and H. El Minor, Comput. Mater. Sci. 97, 148 (2015).CrossRefGoogle Scholar
  14. 14.
    D.P. Almond and P. Patel, Photothermal Science and Techniques, 10th ed. (Berlin: Springer, 1996).Google Scholar
  15. 15.
    E.W. Lemmon and R.T. Jacobsen, Int. J. Themophys. 25, 21 (2004).CrossRefGoogle Scholar
  16. 16.
    T. Kanit, F. N’Guyen, S. Forest, D. Jeulin, M. Reed, and S. Singleton, Comput. Methods Appl. Mech. Eng. 195, 3960 (2006).CrossRefGoogle Scholar
  17. 17.
    T. Gereke, S. Malekmohammadi, C. Nadot-Martin, C. Dai, F. Ellyin, and R. Vaziri, J. Eng. Mech. 138, 791 (2012).CrossRefGoogle Scholar
  18. 18.
    W. Pabst and E. Gregorova, Mater. Sci. Technol. 31, 1801 (2015).CrossRefGoogle Scholar
  19. 19.
    J.K. Carson, S.J. Lovatt, D.J. Tanner, and A.C. Cleland, Int. J. Heat Mass Transf. 48, 2150 (2005).CrossRefGoogle Scholar
  20. 20.
    M. Murabayashi, Y. Takahashi, and T. Mukaibo, J. Nucl. Sci. Technol. 6, 657 (1969).CrossRefGoogle Scholar
  21. 21.
    A.D. Brailsford and K.G. Major, Br. J. Appl. Phys. 15, 313 (1964).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Institut Pprime - UPR CNRS 3346ISAE-ENSMA – Université de PoitiersFuturoscope ChasseneuilFrance
  2. 2.École de Technologie SupÉrieureMontrealCanada
  3. 3.Henry Moseley X-ray Imaging FacilityThe University of ManchesterManchesterUK

Personalised recommendations