Ferromagnetic Phase Stability, Magnetic, Electronic, Elasto-Mechanical and Thermodynamic Properties of BaCmO3 Perovskite Oxide
- 15 Downloads
Abstract
The structural, electronic, elasto-mechanical and thermodynamic properties of cubic ABO3 perovskites BaCmO3 has been successfully calculated within density functional theory via full potential linearized augmented plane wave. The structural study divulges ferromagnetic stability for the compound. For the precise calculation of electronic and magnetic properties a generalized gradient approximation (GGA), and a Hubbard approximation (GGA + U), (modified Becke Johnson approximation) mBJ have been incorporated. The electronic study portrays the half-metallic nature for the compound in all the approximations. The calculated magnetic moment with different approximations was found to be large and with an integer value of 6 μb, this integer value of magnetic moment also proves the half-metallic nature for BaCmO3. The calculated elastic constants have been used to predict mechanical properties like the Young modulus (Y), the Shear modulus (G) and the Poisson ratio (ν). The calculated B/G and Cauchy pressure (C12-C44) present the brittle nature for BaCmO3. The thermodynamic parameters like heat capacity, thermal expansion, and Debye temperature have been calculated and examined in the temperature range of 0 K to 700 K and pressure between 0 GPa and 40 GPa. The melting temperature was also calculated and was found to be 1847 ± 300 K.
Keywords
BaCmO3 DFT half-metallic and ferromagnetic thermodynamics: elastic and mechanical propertiesPreview
Unable to display preview. Download preview PDF.
Supplementary material
References
- 1.M. Imada, A. Fujimori, and Y. Tokura, Mod. Phys. 70, 1039 (1998).CrossRefGoogle Scholar
- 2.F.S. Hickernell, IEEE Trans. Ultrason. 52, 737 (2005).Google Scholar
- 3.P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).CrossRefGoogle Scholar
- 4.A.J. Millis, B.I. Shraiman, and R. Muller, Phys. Rev. Lett. 77, 175 (1996).CrossRefGoogle Scholar
- 5.Y. Tokura, eds., Advances in condensed matter science, Vol. 2 (The Netherlands: Gordan and Breach, 2000).Google Scholar
- 6.M. Bibes and A. Barthélémy, Nat. Mater. 7, 425 (2008).CrossRefGoogle Scholar
- 7.N.C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, and P. Ghosez, Nat. Commun. 6, 6677 (2015).CrossRefGoogle Scholar
- 8.J.F. Scott, Nat. Mater. 6, 256 (2007).CrossRefGoogle Scholar
- 9.Y. Tokura and N. Nagaosa, Science 288, 462 (2000).CrossRefGoogle Scholar
- 10.S.A. Dar, V. Srivastava, and U.K. Sakalle, J. Supercond. Nov. Magn. 30, 3055 (2017).CrossRefGoogle Scholar
- 11.S.A. Dar, V. Srivastava, U.K. Sakalle, S.A. Khandy, and D.C. Gupta, J. Supercond. Nov. Magn. 31, 141 (2018).CrossRefGoogle Scholar
- 12.S.A. Dar, V. Srivastava, U.K. Sakalle, and G. Pagare, J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4574-2.
- 13.S.A. Dar, V. Srivastava, U.K. Sakalle, A. Rashid, and G. Pagare, Mater. Res. Express 5, 026106 (2018).CrossRefGoogle Scholar
- 14.Z. Ali, I. Ahmad, B. Amin, J. Maqsood, A. Afaq, M. Maqbool, I. Khan, and M. Zahid, Opt. Mat. 33, 553 (2011).CrossRefGoogle Scholar
- 15.Z. Ali, I. Ahmad, and A.H. Reshak, Phys. B 410, 217 (2013).CrossRefGoogle Scholar
- 16.B. Sahli, H. Bouafia, B. Abidri, A. Abdellaoui, S. Hiadsi, A. Akriche, N. Benkhettou, and D. Rached, J Alloys Compd. 635, 163 (2015).CrossRefGoogle Scholar
- 17.P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kuasnicke, and J. Luitz, Introduction to WIEN2 K, An Augmented plane wave plus local orbitals program for calculating crystal properties (Vienna: Vienna University of Technology, 2001).Google Scholar
- 18.K. Schwarz, P. Blaha, and G.K.H. Madsen, Comp. Phys. Commun. 147, 71 (2002).CrossRefGoogle Scholar
- 19.J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
- 20.S.A. Dar, S.A. Khandy, I. Islam, D.C. Gupta, U.K. Sakalle, V. Srivastava, and K. Parray, Chin. J. Phys. 55, 1769 (2017).CrossRefGoogle Scholar
- 21.F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).CrossRefGoogle Scholar
- 22.K. Tanaka, I. Sato, T. Hirosawa, K. Kurosaki, H. Muta, and S. Yamanaka, J. Nucl. Mater. 422, 163 (2012).CrossRefGoogle Scholar
- 23.K. Tanaka, I. Sato, T. Hirosawa, K. Kurosaki, H. Muta, and S. Yamanaka, J. Nucl. Mater. 414, 316 (2011).CrossRefGoogle Scholar
- 24.M.A. Blanco, A.M. Pendas, and E.J. Francisco, J. Mol. Struct. Theochem. 268, 245 (1996).CrossRefGoogle Scholar
- 25.A. Otero-de-la-Roza, D. Abbasi-Pérez, and V. Luaña, Comput. Phys. Commun. 182, 2232 (2011).CrossRefGoogle Scholar
- 26.A. Otero-de-la-Roza and V. Luaña, Phys. Rev. B 84, 184103 (2011).CrossRefGoogle Scholar
- 27.Z. Wu and R.E. Cohen, Phys. Rev. B 73, 235116 (2006).CrossRefGoogle Scholar
- 28.A.G. Petukhov and I.I. Mazin, Phys. Rev. B 67, 153106 (2003).CrossRefGoogle Scholar
- 29.P. Novak, J. Kunes, L. Chaput, and W.E. Pickett, Phys. Status Solidi B 243, 563 (2006).CrossRefGoogle Scholar
- 30.V.I. Aisimov, I.V. Solovye, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).CrossRefGoogle Scholar
- 31.H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
- 32.T. Charpin, A Package for Calculating elastic tensors of cubic phases using WIEN: Laboratory of Geometrix F-75252 (Paris, France) (2001).Google Scholar
- 33.F. Birch, J. Appl. Phys. 9, 279 (1938).CrossRefGoogle Scholar
- 34.J. Fuger, R.G. Haire, and J.R. Peterson, J. Alloys Compd. 200, 181 (1993).CrossRefGoogle Scholar
- 35.R. Ubic, J. Am. Ceram. Soc. 90, 3326 (2007).CrossRefGoogle Scholar
- 36.R.D. Shannon, Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751 (1976).Google Scholar
- 37.J.B. Goodenogh, Rep. Prog. Phys. 67, 1915 (2004).CrossRefGoogle Scholar
- 38.L.E. Russel, D.L. Harrison, and N.H. Brett, J. Nucl. Mater. 2, 310 (1960).CrossRefGoogle Scholar
- 39.N. Xu, H. Zhao, X. Zhou, W. Wei, X. Lu, W. Ding, and F. Li, Int. J. Hydrog. Energy 35, 7295 (2010).CrossRefGoogle Scholar
- 40.P.L. Yan, J.M. Zhang, B. Zhou, and K.W. Xu, J. Phys. D:Appl. Phys. 49, 255002 (2016).CrossRefGoogle Scholar
- 41.S.A. Dar, V. Srivastava, and U.K. Sakalle, Mater. Res. Express 4, 086304 (2017).CrossRefGoogle Scholar
- 42.S.A. Dar, V. Srivastava, and U.K. Sakalle, J. Electron. Mater. 46, 6870 (2017).CrossRefGoogle Scholar
- 43.G.V. Sinko and N.A. Smirnov, J. Phys. Condens. Matter 14, 6989 (2002).CrossRefGoogle Scholar
- 44.R. Hill, Proc. Phy. Soc. London 65, 349 (1952).CrossRefGoogle Scholar
- 45.A. Reuss and Z. Angew, Mater. Phys. 9, 49 (1929).Google Scholar
- 46.V. Tvergaard and J.W. Hirtchinson, J. Am. Ceram. Soc. 71, 157 (1988).CrossRefGoogle Scholar
- 47.D.G. Pertifor, Mater. Sci. Technol. 8, 345 (1992).CrossRefGoogle Scholar
- 48.J. Haines, J.M. Leger, and G. Bocquillon, Ann. Rev. Mater. Sci. 31, 1 (2001).CrossRefGoogle Scholar
- 49.S.F. Pugh, Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
- 50.E. Schreiber, O.L. Anderson, and N. Soga, Elastic constants and measurements (New York: M.C Graw Hill, 1973).Google Scholar
- 51.K. Bencherif, A. Yakoubi, N. Della, O.M. Abid, H. Khachai, and R. Ahmad, et al., J. Electr. Mater. 45, 3479 (2016).CrossRefGoogle Scholar
- 52.L. Quiang, H. Duo-Hui, C. Qi-Long, and W. Fan-Hou, Chin. Phys. B 22, 037101 (2013).CrossRefGoogle Scholar
- 53.A.T. Petit and P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819).Google Scholar