Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3788–3794 | Cite as

Synthesis of Carbon Nanotubes and Nanospheres from Coconut Fibre and the Role of Synthesis Temperature on Their Growth

  • Gloria A. Adewumi
  • Freddie Inambao
  • Andrew Eloka-Eboka
  • Neerish Revaprasadu
Article
  • 76 Downloads

Abstract

Carbon nanotubes (CNT) and carbon nanospheres were successfully synthesized from coconut fibre-activated carbon. The biomass was first carbonized then physically activated, followed by treatment using ethanol vapor at 700°C to 1100°C at 100°C intervals. The effect of synthesis temperature on the formation of the nanomaterials was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrometry, x-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR) and thermogravimetric analysis. SEM analysis revealed that nanospheres were formed at higher temperatures of 1000°C and 1100°C, while lower temperatures of 800°C and 900°C favored the growth of CNT. At 700°C, however, no tubes or spheres were formed. TEM and FTIR were used to observe spectral features, such as the peak positions, intensity and bandwidth, which are linked to some structural properties of the samples investigated. All these observations provided facts on the nanosphere and nanotube dimensions, vibrational modes and the degree of purity of the obtained samples. The TEM results show spheres of diameter in the range 50 nm to 250 nm while the tubes had diameters between 50 nm to 100 nm. XRD analysis reveals the materials synthesized are amorphous in nature with a hexagonal graphite structure.

Keywords

Carbon nanotubes carbon nanospheres SEM bio-based precursors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. He, H. Li, Y. Liu, H. Huang, Z. Kang, and S.-T. Lee, Colloids Surf. B 87, 326 (2011).CrossRefGoogle Scholar
  2. 2.
    H. Li, X.D. He, Y.Y. Liu, H. Huang, S. Lian, S.T. Lee, and Z.H. Kang, Carbon 49, 605 (2011).CrossRefGoogle Scholar
  3. 3.
    H. Li, X. He, Y. Liu, H. Yu, Z. Kang, and S.-T. Lee, Mater. Res. Bull. 46, 147 (2011).CrossRefGoogle Scholar
  4. 4.
    Z. Ma, H. Ming, H. Huang, Y. Liu, and Z. Kang, New J. Chem. 36, 861 (2012).CrossRefGoogle Scholar
  5. 5.
    J.S. Sagu, U. Wijayantha, K. Gamage, M. Bohm, S. Bohm, and T.K. Rout, Adv. Eng. Mater. 18, 1059 (2016).CrossRefGoogle Scholar
  6. 6.
    Y. Ding, H. Alias, D. Wen, and R.A. Williams, Int. J. Heat Mass Transf. 49, 240 (2006).CrossRefGoogle Scholar
  7. 7.
    P. Estellé, Mater. Lett. 138, 162 (2015).CrossRefGoogle Scholar
  8. 8.
    S. Halelfadl, P. Estellé, B. Aladag, N. Doner, and T. Maré, Int. J. Therm. Sci. 71, 111 (2013).CrossRefGoogle Scholar
  9. 9.
    S. Halelfadl, T. Maré, and P. Estellé, Exp. Therm. Fluid Sci. 53, 104 (2014).CrossRefGoogle Scholar
  10. 10.
    B. Jo and D. Banerjee, Mater. Lett. 122, 212 (2014).CrossRefGoogle Scholar
  11. 11.
    M.-S. Liu, M. Ching-Cheng Lin, I.T. Huang, and C.-C. Wang, Int. Commun. Heat Mass Transf. 32, 1202 (2005).CrossRefGoogle Scholar
  12. 12.
    L. Lu, Z.-H. Liu, and H.-S. Xiao, Sol. Energy 85, 379 (2011).CrossRefGoogle Scholar
  13. 13.
    T. Maré, S. Halelfadl, S. Van Vaerenbergh, and P. Estellé, Int. Commun. Heat Mass Transf. 66, 80 (2015).CrossRefGoogle Scholar
  14. 14.
    R. Sadri, G. Ahmadi, H. Togun, M. Dahari, S.N. Kazi, E. Sadeghinezhad, and N. Zubir, Nanoscale Res. Lett. 9, 151 (2014).CrossRefGoogle Scholar
  15. 15.
    R. Saidur, K.Y. Leong, and H.A. Mohammad, Renew. Sustain. Energy Rev. 15, 1646 (2011).CrossRefGoogle Scholar
  16. 16.
    X.-Q. Wang and A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007).CrossRefGoogle Scholar
  17. 17.
    Y. Wang, F. Su, C.D. Wood, J.Y. Lee, and X.S. Zhao, Ind. Eng. Chem. Res. 47, 2294 (2008).CrossRefGoogle Scholar
  18. 18.
    D. Antiohos, M. Romano, J. Chen, and J.M. Razal, Syntheses and Applications of Carbon Nanotubes and Their Composites, ed. S. Suzuki (Rijeka: InTech, 2013), https://doi.org/10.5772/51784.Google Scholar
  19. 19.
    L.-M. Peng, Z. Zhang, and S. Wang, Mater. Today 17, 433 (2014).CrossRefGoogle Scholar
  20. 20.
    H. He, L.A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, and C. Pham-Huy, BioMed Res. Int. 2013, 1 (2013).Google Scholar
  21. 21.
    V. Amenta and K. Aschberger, WIREs Nanomed. Nanobiotechnol. 7, 371 (2015).CrossRefGoogle Scholar
  22. 22.
    W. Shao, P. Arghya, M. Yiyong, L. Rodes, and S. Prakash, Syntheses and Applications of Carbon Nanotubes and Their Composites, ed. S. Suzuki (Rijeka: InTech, 2013), https://doi.org/10.5772/51785.Google Scholar
  23. 23.
    K. Shi, J. Yan, E. Lester, and T. Wu, Ind. Eng. Chem. Res. 53, 15012 (2014).CrossRefGoogle Scholar
  24. 24.
    J.O. Alves, J.A.S. Tenório, C. Zhuo, and Y.A. Levendis, J. Mater. Res. Technol. 1, 31 (2012).CrossRefGoogle Scholar
  25. 25.
    H.M. Al-Swaidan, A. Ahmad, in 3rd International Conference on Chemical, Biological and Environmental Engineering, (2011), pp. 25–31.Google Scholar
  26. 26.
    T.A. Hassan, V.K. Rangari, V. Fallon, Y. Farooq, S. Jeelani, in Proceedings of the Nanotechnology Conference, (2010), pp. 278–281.Google Scholar
  27. 27.
    S.S. Shams, L.S. Zhang, R. Hu, R. Zhang, and J. Zhu, Mater. Lett. 161, 476 (2015).CrossRefGoogle Scholar
  28. 28.
    N.A. Fathy, RSC Adv. 7, 28535 (2017).CrossRefGoogle Scholar
  29. 29.
    P. Gonugunta, S. Vivekanandhan, A.K. Mohanty, and M. Misra, World J. Nano Sci. Eng. 2, 148 (2012).CrossRefGoogle Scholar
  30. 30.
    X.-W. Chen, O. Timpe, S.B.A. Hamid, R. Schlögl, and D.S. Su, Carbon 47, 340 (2009).CrossRefGoogle Scholar
  31. 31.
    I. Abdullahi, N. Sakulchaicharoen, and J.E. Herrera, Diam. Relat. Mater. 41, 84 (2014).CrossRefGoogle Scholar
  32. 32.
    N. Jeong, Y. Seo, and J. Lee, Diam. Relat. Mater. 16, 600 (2007).CrossRefGoogle Scholar
  33. 33.
    M.S. Shamsudin, N.A. Asli, S. Abdullah, S.Y.S. Yahya, and M. Rusop, Adv. Condens. Matter Phys. 2012, 1 (2012).CrossRefGoogle Scholar
  34. 34.
    D. Lopez, I. Abe, and I. Pereyra, Diam. Relat. Mater. 52, 59 (2015).CrossRefGoogle Scholar
  35. 35.
    S.M. Toussi, A. Fakhru’l-Razi, A. Suraya, in IOP Conference Series: Materials Science and Engineering, vol. 17 (IOP Publishing, 2011), p. 012003.Google Scholar
  36. 36.
    M. Shamsudin, N. Asli, S. Abdullah, S. Yahya, and M. Rusop, Adv. Condens. Matter Phys. 2012, 420619 (2012).CrossRefGoogle Scholar
  37. 37.
    Y. Jiang and C. Lan, Mater. Lett. 157, 269 (2015).CrossRefGoogle Scholar
  38. 38.
    S. Alam, B. Seema, and F.K. Bangash, J. Chem. Soc. Pak. 31, 46 (2009).Google Scholar
  39. 39.
    G. Allaedini, S.M. Tasirin, and P. Aminayi, J. Alloys Compd. 647, 809 (2015).CrossRefGoogle Scholar
  40. 40.
    O.-K. Park, H.-S. Chae, G.Y. Park, N.-H. You, S. Lee, Y.H. Bang, D. Hui, B.-C. Ku, and J.H. Lee, Compos. B 76, 159 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Discipline of Mechanical Engineering, School of EngineeringUniversity of KwaZulu-Natal, Howard CollegeDurbanSouth Africa
  2. 2.University of ZululandKwadlangezwaSouth Africa

Personalised recommendations