Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3779–3787 | Cite as

Electrosprayed Cerium Oxide Nanoparticles

  • Pedram Bagherzadeh Azar
  • Hossein Tavanai
  • Ali Reza Allafchian
Article

Abstract

Cerium oxide nanoparticles were fabricated via the calcination of electrosprayed polyvinyl alcohol (PVA)/cerium nitrate nanoparticles. The effect of material variables of PVA/cerium nitrate electrospraying solution, i.e. viscosity, surface tension and electrical conductivity, as well as important process variables like voltage, nozzle–collector distance and feed rate on cerium oxide nanoparticle size, are investigated. Scanning electron microscopy and Fourier-transform infrared (FTIR) spectroscopy analysis have also been carried out. The results showed that electrospraying of PVA/cerium nitrate (25% w/v) was only possible with PVA concentrations in the range of 5–8% w/v. With other conditions constant, decreasing PVA concentration, decreasing feed rate, increasing nozzle–collector distance and increasing voltage decreased the size of the final cerium oxide nanoparticles. The gross average size of all cerium oxide nanoparticles obtained in this work was about 80 nm. FTIR analysis proved the formation of cerium oxide after the calcination process.

Keywords

Ceramic nanoparticles cerium oxide cerium nitrate electrospray average nanoparticle size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.A. Ring, Fundamentals of Ceramic Powder Processing and Synthesis (Cambridge: Academic, 1996).Google Scholar
  2. 2.
    G. Bronitsky, Adv. Archaeol. Method Theory 9, 209 (1986).CrossRefGoogle Scholar
  3. 3.
    D. Uhlmann, H.K. Bowen, and W. Kingery, Introduction to Ceramics (New York: Wiley, 1976).Google Scholar
  4. 4.
    S. Somiya, Handbook of Advanced Ceramics (Amsterdam: Elsevier, 2003).Google Scholar
  5. 5.
    K.-S. Lew, R. Othman, K. Ishikawa, and F.-Y. Yeoh, J. Biomater. Appl. 27, 345 (2011).CrossRefGoogle Scholar
  6. 6.
    C.B. Carter and M.G. Norton, Ceramic Materials: Science and Engineering (New York: Springer, 2007).Google Scholar
  7. 7.
    L.L. Hench, R.J. Splinter, W. Allen, and T. Greenlee, J. Biomed. Mater. Res. 5, 117 (1971).CrossRefGoogle Scholar
  8. 8.
    D.L. Chess, C.A. Chess, and W.B. White, Mater. Res. Bull. 19, 1551 (1984).CrossRefGoogle Scholar
  9. 9.
    L. Ayuk Eugene, O. Ugwu Mariagoretti, and B. Aronimo Samuel, Chem. Res. J. 2, 97 (2017).Google Scholar
  10. 10.
    K. Reinhardt and H. Winkler, Cerium Mischmetal, Cerium Alloys, and Cerium Compounds (Weinheim: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, 2002).Google Scholar
  11. 11.
    H. Meixner and U. Lampe, Sens. Actuators B 33, 198 (1996).CrossRefGoogle Scholar
  12. 12.
    P.T. Moseley, Sens. Actuators B 6, 149 (1992).CrossRefGoogle Scholar
  13. 13.
    G. Sberveglieri, Sens. Actuators B 23, 103 (1995).CrossRefGoogle Scholar
  14. 14.
    R. Bene, I. Perczer, F. Reti, F. Meyer, M. Fleisher, and H. Meixner, Sens. Actuators B 71, 36 (2000).CrossRefGoogle Scholar
  15. 15.
    H.J. Beie and A. Gnorich, Sens. Actuators B 4, 393 (1991).CrossRefGoogle Scholar
  16. 16.
    T. Suzuki, I. Kosacki, H.U. Anderson, and P. Colomban, J. Am. Ceram. Soc. 84, 2007 (2001).CrossRefGoogle Scholar
  17. 17.
    P. Jasinski, T.S. Harlan, and U. Anderson, Sens. Actuators, B 95, 73 (2003).CrossRefGoogle Scholar
  18. 18.
    A. Rayegan, A. Allafchian, I. Abdolhosseini, and P. Kameli, Int. J. Biol. Macromol. (2018).  https://doi.org/10.1016/j.ijbiomac.2018.02.134.Google Scholar
  19. 19.
    A.A. Ensafi, A.R. Allafchian, and B. Rezaei, Colloids Surf. B Biointerfaces 103, 468 (2013).CrossRefGoogle Scholar
  20. 20.
    L. Ding, N. Liu, L. Li, X. Wei, X. Zhang, J. Su, J. Rao, C. Yang, W. Li, and J. Wang, Adv. Mater. 27, 3579 (2015).CrossRefGoogle Scholar
  21. 21.
    Q. Mahmood, A. Afzal, H.M. Siddiqi, and A. Habib, J. Sol-Gel Sci. Tech. 67, 670 (2013).CrossRefGoogle Scholar
  22. 22.
    K. Anandan and V. Rajendran, J. Phys. Sci. 17, 179 (2013).Google Scholar
  23. 23.
    L. Yin, Y. Wang, G. Pang, Y. Koltypin, and A. Gedanken, J. Colloid Int. Sci. 246, 78 (2002).CrossRefGoogle Scholar
  24. 24.
    T. Masui, H. Hirai, N. Imanaka, G. Adachi, T. Sakata, and H. Mori, J. Mater. Sci. Let. 21, 489 (2002).CrossRefGoogle Scholar
  25. 25.
    H. Oh and S. Kim, J. Aerosol Sci. 38, 1185 (2007).CrossRefGoogle Scholar
  26. 26.
    D. Ni, W. Yi, Z. Cao, and W. Gu. Applied Optics and Photonics China (AOPC2015). International Society for Optics and Photonics, 967310 (2015).Google Scholar
  27. 27.
    A. Jaworek, Powder Tech. 176, 18 (2007).CrossRefGoogle Scholar
  28. 28.
    M. Valvo, U. Lafont, D. Munao, and E. Kelder, J. Power Sour. 189, 297 (2009).CrossRefGoogle Scholar
  29. 29.
    A. Gholami, H. Tavanai, and A. Moradi, J. Nanopart. Res. 13, 2089 (2011).CrossRefGoogle Scholar
  30. 30.
    N. Hazeri, H. Tavanai, and A.R. Moradi, Sci. Technol. Adv. Mater. 13, 035010 (2013).CrossRefGoogle Scholar
  31. 31.
    F. Ebrahimgol, H. Tavanai, F. Alihosseini, and T. Khayamian, Polymer. Adv. Tech. 25, 1001 (2014).CrossRefGoogle Scholar
  32. 32.
    Z.P. Rad, H. Tavanai, and A. Moradi, J. Aerosol Sci. 51, 49 (2012).CrossRefGoogle Scholar
  33. 33.
    M. Ghaeb, H. Tavanai, and M. Kadivar, Polymer Adv. Tech. 26, 917 (2015).CrossRefGoogle Scholar
  34. 34.
    A. Jaworek and A. Sobczyk, J. Electrostat. 66, 197 (2008).CrossRefGoogle Scholar
  35. 35.
    X. Yang, C. Shao, Y. Liu, R. Mu, and H. Guan, Thin Solid Films 478, 228 (2005).CrossRefGoogle Scholar
  36. 36.
    P. Periyat, F. Laffir, S.A.M. Tofail, and E. Magner, RSC Adv. 1, 1794 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Pedram Bagherzadeh Azar
    • 1
  • Hossein Tavanai
    • 1
    • 2
    • 3
  • Ali Reza Allafchian
    • 2
    • 3
  1. 1.Department of Textile EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Center of Excellence in Applied NanotechnologyIsfahan University of TechnologyIsfahanIran
  3. 3.Research Institute for Nanotechnology and Advanced MaterialsIsfahan University of TechnologyIsfahanIran

Personalised recommendations