Journal of Electronic Materials

, Volume 47, Issue 9, pp 5002–5006 | Cite as

Influence of the Interaction Between Graphite and Polar Surfaces of ZnO on the Formation of Schottky Contact

  • R. Yatskiv
  • J. Grym
Topical Collection: 17th Conference on Defects (DRIP XVII)
Part of the following topical collections:
  1. 17th Conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP XVII)


We show that the interaction between graphite and polar surfaces of ZnO affects electrical properties of graphite/ZnO Schottky junctions. A strong interaction of the Zn-face with the graphite contact causes interface imperfections and results in the formation of laterally inhomogeneous Schottky contacts. On the contrary, high quality Schottky junctions form on the O-face, where the interaction is significantly weaker. Charge transport through the O-face ZnO/graphite junctions is well described by the thermionic emission model in both forward and reverse directions. We further demonstrate that the parameters of the graphite/ZnO Schottky diodes can be significantly improved when a thin layer of ZnO2 forms at the interface between graphite and ZnO after hydrogen peroxide surface treatment.


ZnO Schottky contact graphite-ZnO interfaces metal-insulator-semiconductor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.A. Mead, Phys. Lett. 18, 218 (1965).CrossRefGoogle Scholar
  2. 2.
    L.J. Brillson and Y.C. Lu, J. Appl. Phys. 109, 121301 (2011).CrossRefGoogle Scholar
  3. 3.
    S. Mueller, H. von Wenckstern, F. Schmidt, D. Splith, R. Heinhold, M. Allen, and M. Grundmann, J. Appl. Phys. 116, 194506 (2014).CrossRefGoogle Scholar
  4. 4.
    B.J. Coppa, R.F. Davis, and R.J. Nemanich, Appl. Phys. Lett. 82, 400 (2003).CrossRefGoogle Scholar
  5. 5.
    K. Ip, B.P. Gila, A.H. Onstine, E.S. Lambers, Y.W. Heo, K.H. Baik, D.P. Norton, S.J. Pearton, S. Kim, J.R. LaRoche, and F. Ren, Appl. Phys. Lett. 84, 5133 (2004).CrossRefGoogle Scholar
  6. 6.
    S.H. Kim, H.K. Kim, and T.Y. Seong, Appl. Phys. Lett. 86, 022101 (2005).CrossRefGoogle Scholar
  7. 7.
    S.H. Kim, H.K. Kim, and T.Y. Seong, Appl. Phys. Lett. 86, 112101 (2005).CrossRefGoogle Scholar
  8. 8.
    Q.L. Gu, C.K. Cheung, C.C. Ling, A.M.C. Ng, A.B. Djurisic, L.W. Lu, X.D. Chen, S. Fung, C.D. Beling, and H.C. Ong, J. Appl. Phys. 103, 093706 (2008).CrossRefGoogle Scholar
  9. 9.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
  10. 10.
    M.W. Allen, P. Miller, R.J. Reeves, and S.M. Durbin, Appl. Phys. Lett. 90, 062104 (2007).CrossRefGoogle Scholar
  11. 11.
    A.M. Hyland, R.A. Makin, S.M. Durbin, and M.W. Allen, J. Appl. Phys. 121, 024501 (2017).CrossRefGoogle Scholar
  12. 12.
    M. Nakano, A. Tsukazaki, R.Y. Gunji, K. Ueno, A. Ohtomo, T. Fukumura, and M. Kawasaki, Appl. Phys. Lett. 91, 142113 (2007).CrossRefGoogle Scholar
  13. 13.
    R. Yatskiv and J. Grym, Appl. Phys. Lett. 101, 162106 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Samir, R. Jürgen, K. Julia, R. Christian, W. Martina, W. Veit, S. Florian, and S. Thomas, 2D Mater. 4, 015043 (2017).CrossRefGoogle Scholar
  15. 15.
    S.C. Han, J.K. Kim, J.Y. Kim, K.K. Kim, H. Tampo, S. Niki, and J.M. Lee, J. Electrochem. Soc. 157, D60 (2010).CrossRefGoogle Scholar
  16. 16.
    R. Yatskiv, J. Grym, P. Gladkov, O. Cernohorsky, J. Vanis, J. Maixner, and J.H. Dickerson, Solid State Electron. 116, 124 (2016).CrossRefGoogle Scholar
  17. 17.
    L.A. Kosyachenko, R. Yatskiv, N.S. Yurtsenyuk, O.L. Maslyanchuk, and J. Grym, Semicond. Sci. Technol. 29, 015006 (2014).CrossRefGoogle Scholar
  18. 18.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (Hoboken: Wiley, 2007).Google Scholar
  19. 19.
    W. Geng, X. Zhao, H. Liu, and X. Yao, J. Phys. Chem. C 117, 10536 (2013).CrossRefGoogle Scholar
  20. 20.
    T.U. Kampen and W. Monch, Surf. Sci. 331, 490 (1995).CrossRefGoogle Scholar
  21. 21.
    W. Monch, J. Vac. Sci. Technol. B 17, 1867 (1999).CrossRefGoogle Scholar
  22. 22.
    A. Nakamura and J. Temmyo, J. Appl. Phys. 110, 093517 (2011).CrossRefGoogle Scholar
  23. 23.
    A. Kurtz, E. Munoz, J.M. Chauveau, and A. Hierro, J. Phys. D Appl. Phys. 50, 065104 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Institute of Photonics and ElectronicsCzech Academy of SciencesPrague 8Czech Republic

Personalised recommendations