Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes

Article
  • 8 Downloads

Abstract

Transition-metal oxides with porous structure are considered for use as promising electrodes for high-performance supercapacitors. Nanocrystalline nickel oxide (NiO) thin films have been prepared as active material for supercapacitors by spray pyrolysis. In this study, the effects of the film thickness on its structural, morphological, optical, electrical, and electrochemical properties were studied. X-ray diffraction analysis revealed cubic structure with average crystalline size of around 21 nm. Scanning electron microscopy showed porous morphology. The optical bandgap decreased from 3.04 eV to 2.97 eV with increase in the film thickness. Electrical resistivity measurements indicated semiconducting behavior. Cyclic voltammetry and galvanostatic charge/discharge study revealed good pseudocapacitive behavior. Specific capacitance of 564 F g−1 at scan rate of 5 mV s−1 and 553 F g−1 at current density of 1 A g−1 was observed. An NiO-based supercapacitor delivered specific energy of 22.8 W h kg−1 at specific power of 2.16 kW kg−1, and retained 93.01% specific capacitance at current density of 1 A g−1 after 1000 cycles. Therefore, taking advantage of the porous morphology that exists in the nanostructure, such NiO materials can be considered for use as promising electrodes for high-performance supercapacitors.

Keywords

Nanostructured materials X-ray diffraction crystal structure scanning electron microscopy energy storage materials electrochemical impedance spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Yan, Q. Wang, T. Wei, and Z. Fan, Adv. Energy Mater. 4, 11 (2014).Google Scholar
  2. 2.
    T.P. Tran and Q.H. Do, J. Electron. Mater. 46, 6056 (2017).CrossRefGoogle Scholar
  3. 3.
    B. Wang, J. Qiu, H. Feng, E. Sakai, and T. Komiyama, J. Electroanal. Chem. 775, 219 (2016).CrossRefGoogle Scholar
  4. 4.
    N.H. Alshareef, D. Whitehair, and C. Xia, J. Electron. Mater. 46, 1628 (2017).CrossRefGoogle Scholar
  5. 5.
    A.A. Yadav, S.N. Jadhav, D.M. Chougule, P.D. Patil, U.J. Chavan, and Y.D. Kolekar, Electrochim. Acta 206, 134 (2016).CrossRefGoogle Scholar
  6. 6.
    W. Dang, C. Dong, Z. Zhang, G. Chen, Y. Wang, and H. Guan, Electrochim. Acta 217, 16 (2016).CrossRefGoogle Scholar
  7. 7.
    S. Hao, Y. Sun, Y. Liu, Y. Zhang, and G. Hu, J. Alloys Compd. 689, 587 (2016).CrossRefGoogle Scholar
  8. 8.
    X. Bai, Q. Liu, H. Zhang, J. Liu, Z. Li, X. Jing, Y. Yuan, L. Liu, and J. Wang, Electrochim. Acta 215, 492 (2016).CrossRefGoogle Scholar
  9. 9.
    J.V.S. Moreira, P.W. May, E.J. Corat, A.C. Peterlevitz, R.A. Pinheiro, and H. Zanin, J. Electron. Mater. 46, 929 (2017).CrossRefGoogle Scholar
  10. 10.
    J. Ye, Z. Li, Z. Dai, Z. Zhang, M. Guo, and X. Wang, J. Electron. Mater. 45, 4237 (2016).CrossRefGoogle Scholar
  11. 11.
    J.H. Kim, K.W. Nam, S.B. Ma, and K.B. Kim, Carbon 44, 1963 (2006).CrossRefGoogle Scholar
  12. 12.
    Q. Yang, Z. Lu, J. Liu, X. Lei, Z. Chang, L. Luo, and X. Sun, Prog. Nat. Sci. 23, 351 (2013).CrossRefGoogle Scholar
  13. 13.
    Y. Li, K. Huang, D. Zeng, S. Liu, and Z. Yao, J. Solid State Electrochem. 14, 1205 (2010).CrossRefGoogle Scholar
  14. 14.
    X. Wang, X. Wu, B. Xu, and T. Hua, J. Solid State Electrochem. 20, 1303 (2016).CrossRefGoogle Scholar
  15. 15.
    M. Shahraki, S. Elyasi, H. Heydari, and N. Dalir, J. Electron. Mater. 46, 4948 (2017).CrossRefGoogle Scholar
  16. 16.
    A.A. Yadav, J. Mater. Sci.: Mater. Electron. 27, 12876 (2016).Google Scholar
  17. 17.
    A.A. Yadav, J. Mater. Sci.: Mater. Electron. 27, 6985 (2016).Google Scholar
  18. 18.
    S. Rajaboopathi and S. Thambidurai, Mater. Sci. Semicond. Process. 59, 56 (2017).CrossRefGoogle Scholar
  19. 19.
    M. Fterich, F.B. Nasr, R. Lefi, M. Toumi, and S. Guermazi, Mater. Sci. Semicond. Process. 43, 114 (2016).CrossRefGoogle Scholar
  20. 20.
    F. Cao, G.X. Pan, X.H. Xia, P.S. Tang, and H.F. Chen, J. Power Sources 264, 161 (2014).CrossRefGoogle Scholar
  21. 21.
    Y. Zeng, L. Wang, Z. Wang, J. Xiao, and H. Wang, Mater. Today Commun. 5, 70 (2015).CrossRefGoogle Scholar
  22. 22.
    H. Xiao, S. Yao, H. Liu, Q. Fengyu, X. Zhang, and W. Xiang, Prog. Nat. Sci.: Mater. Int. 26, 271 (2016).CrossRefGoogle Scholar
  23. 23.
    M. Zhang, Q. Li, D. Fang, I.A. Ayhan, Y. Zhou, L. Dong, C. Xiong, and Q. Wang, RSC Adv. 5, 96205 (2015).CrossRefGoogle Scholar
  24. 24.
    W. Yu, X. Jiang, S. Ding, and B.Q. Li, J. Power Sources 256, 440 (2014).CrossRefGoogle Scholar
  25. 25.
    A.I. Inamdar, Y.S. Kim, S.M. Pawar, J.H. Kim, H. Im, and H. Kim, J. Power Sources 196, 2393 (2011).CrossRefGoogle Scholar
  26. 26.
    M. Jing, C. Wang, H. Hou, Z. Wu, Y. Zhu, Y. Yang, X. Jia, Y. Zhang, and X. Ji, J. Power Sources 298, 241 (2015).CrossRefGoogle Scholar
  27. 27.
    M. Krunks, J. Soon, T. Unt, A. Mere, and V. Mikli, Vacuum 107, 242 (2014).CrossRefGoogle Scholar
  28. 28.
    U.M. Patil, R.R. Salunkhe, K.V. Gurav, and C.D. Lokhande, Appl. Surf. Sci. 255, 2603 (2008).CrossRefGoogle Scholar
  29. 29.
    M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia, Appl. Surf. Sci. 308, 199 (2014).CrossRefGoogle Scholar
  30. 30.
    K.X. Steirer, R.E. Richards, A.K. Sigdel, A. Garcia, P.F. Ndione, S. Hammond, D. Baker, E.L. Ratcliff, C. Curtis, T. Furtak, D.S. Ginley, D.C. Olson, N.R. Armstronga, and J.J. Berry, J. Mater. Chem. A3, 10949 (2015).CrossRefGoogle Scholar
  31. 31.
    A.M. Soleimanpour, A.H. Jayatissaa, and G. Sumanasekera, Appl. Surf. Sci. 276, 291 (2013).CrossRefGoogle Scholar
  32. 32.
    J.D. Desai, S.K. Min, K.D. Jung, and O.S. Joo, Appl. Surf. Sci. 253, 1781 (2006).CrossRefGoogle Scholar
  33. 33.
    S. Zhu, Y. Dai, W. Huang, C. Zhang, Y. Zhao, L. Tan, and Z. Wang, Mater. Lett. 161, 731 (2015).CrossRefGoogle Scholar
  34. 34.
    I.A. Garduno, J.C. Alonso, M. Bizarro, R. Ortega, L. Rodrıguez-Fernandez, and A. Ortiz, J. Cryst. Growth 312, 3276 (2010).CrossRefGoogle Scholar
  35. 35.
    A.A. Yadav, M.A. Barote, P.M. Dongre, and E.U. Masumdar, J. Alloys Compd. 493, 179 (2010).CrossRefGoogle Scholar
  36. 36.
    R. Sharma, A.D. Acharya, S.B. Shrivastava, M.M. Patidar, M. Gangrade, T. Shripathi, and V. Ganesan, Optik 127, 4661 (2016).CrossRefGoogle Scholar
  37. 37.
    A.A. Yadav, E.U. Masumdar, A.V. Moholkar, K.Y. Rajpure, and C.H. Bhosale, Phys. B 404, 1874 (2009).CrossRefGoogle Scholar
  38. 38.
    A.A. Yadav and U.J. Chavan, J. Electroanal. Chem. 782, 36 (2016).CrossRefGoogle Scholar
  39. 39.
    A.A. Yadav, M.A. Barote, and E.U. Masumdar, Mater. Chem. Phys. 121, 53 (2010).CrossRefGoogle Scholar
  40. 40.
    V. Gowthami, P. Perumal, R. Sivakumar, and C. Sanjeeviraja, Phys. B 452, 1 (2014).CrossRefGoogle Scholar
  41. 41.
    Y. Li, X. Li, Z. Wang, H. Guo, and T. Li, Ceram. Int. 42, 14565 (2016).CrossRefGoogle Scholar
  42. 42.
    P. Puspharajah, S. Radhakrishna, and A.K. Arof, J. Mater. Sci. 32, 3001 (1997).CrossRefGoogle Scholar
  43. 43.
    A. Venter and J.R. Botha, S. Afr. J. Sci. 107, 1–6 (2011).CrossRefGoogle Scholar
  44. 44.
    K.C. Yung, H. Liem, and H.S. Choy, J. Phys. D Appl. Phys. 42, 185002 (2009).CrossRefGoogle Scholar
  45. 45.
    P.S. Patil and L.D. Kadam, Appl. Surf. Sci. 199, 211 (2002).CrossRefGoogle Scholar
  46. 46.
    B. Sasi, K.G. Gopchandran, P.K. Manoj, P. Koshy, P.P. Rao, and V.K. Vaidyan, Vacuum 68, 149 (2003).CrossRefGoogle Scholar
  47. 47.
    A.R. Balu, V.S. Nagarethinam, N. Arunkumar, and M. Suganya, J. Electron Devices 13, 920 (2012).Google Scholar
  48. 48.
    Y. Akaltun and T. Çayir, J. Alloys Compd. 625, 144 (2015).CrossRefGoogle Scholar
  49. 49.
    A. Hakim, J. Hossain, and K.A. Khan, Renew. Energy 34, 2625 (2009).CrossRefGoogle Scholar
  50. 50.
    M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).CrossRefGoogle Scholar
  51. 51.
    N. Boukmouchem, N. Azzouz, L. Bouchama, A.L. Daltin, J.P. Chopart, and Y. Bouznit, Mater. Sci. Semicond. Process. 27, 233 (2014).CrossRefGoogle Scholar
  52. 52.
    S.T. Navale, V.V. Mali, S.A. Pawar, R.S. Mane, M. Naushad, F.J. Stadler, and V.B. Patil, RSC Adv. 5, 51961 (2015).CrossRefGoogle Scholar
  53. 53.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (New York: Kluwer Academic, 1999).CrossRefGoogle Scholar
  54. 54.
    R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, and Y. Yamauchi, Nano Energy 11, 211 (2015).CrossRefGoogle Scholar
  55. 55.
    N. Duraisamy, A. Numan, K. Ramesh, K.-H. Choi, and S. Ramesh, Mater. Lett. 161, 694 (2015).CrossRefGoogle Scholar
  56. 56.
    W. Sun, L. Chen, S. Meng, Y. Wang, H. Li, Y. Han, and N. We, Mater. Sci. Semicond. Process. 17, 129 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Thin Film Physics Laboratory, Department of Physics, Electronics and PhotonicsRajarshi Shahu Mahavidyalaya, Latur (Autonomous)LaturIndia

Personalised recommendations