Advertisement

Journal of Electronic Materials

, Volume 47, Issue 8, pp 4325–4331 | Cite as

Theoretical Determination of Optimal Material Parameters for ZnCdTe/ZnCdSe Quantum Dot Intermediate Band Solar Cells

  • C. M. Imperato
  • G. A. Ranepura
  • L. I. Deych
  • I. L. Kuskovsky
Topical Collection: 18th International Conference on II-VI Compounds
  • 37 Downloads
Part of the following topical collections:
  1. 18th International Conference on II-VI Compounds and Related Materials

Abstract

Intermediate band solar cells (IBSCs) are designed to enhance the photovoltaic efficiency significantly over that of a single-junction solar cell as determined by the Shockley–Queisser limit. In this work we present calculations to determine parameters of type-II Zn1−xCdxTe/Zn1−yCdySe quantum dots (QDs) grown on the InP substrate suitable for IBSCs. The calculations are done via the self-consistent variational method, accounting for the disk form of the QDs, presence of the strained ZnSe interfacial layer, and under conditions of a strain-free device structure. We show that to achieve the required parameters relatively thick QDs are required. Barriers must contain Cd concentration in the range of 35–44%, while Cd concentration in QD can vary widely from 0% to 70%, depending on their thickness to achieve the intermediate band energies in the range of 0.50–0.73 eV. It is also shown that the results are weakly dependent on the barrier thickness.

Keywords

Intermediate band solar cells type-II quantum dots ZnCdSe ZnCdTe self-consistent variational method interfacial layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2018_6241_MOESM1_ESM.pdf (160 kb)
Supplementary material 1 (PDF 159 kb)

References

  1. 1.
    W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
  2. 2.
    G.L. Araújo and A. Martí, Sol. Energy Mater. Sol. Cells 33, 213 (1994).CrossRefGoogle Scholar
  3. 3.
    A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997).CrossRefGoogle Scholar
  4. 4.
    A. Luque and A. Martí, Adv. Mater. 22, 160 (2010).CrossRefGoogle Scholar
  5. 5.
    A. Luque and A. Martí, Nat. Photonics 5, 137 (2011).CrossRefGoogle Scholar
  6. 6.
    A. Luque, A. Martí, and C. Stanley, Nat. Photonics 6, 146 (2012).CrossRefGoogle Scholar
  7. 7.
    K.A. Sablon, J.W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, Nano Lett. 11, 2311 (2011).CrossRefGoogle Scholar
  8. 8.
    A. Datas, E. Lopez, I. Ramiro, E. Antolin, A. Marti, A. Luque, R. Tamaki, Y. Shoji, T. Sogabe, and Y. Okada, Phys. Rev. Lett. 114, 157701 (2015).CrossRefGoogle Scholar
  9. 9.
    K. Sablon, Y. Li, N. Vagidov, V. Mitin, J.W. Little, H. Hier, and A. Sergeev, Appl. Phys. Lett. 107, 073901 (2015).CrossRefGoogle Scholar
  10. 10.
    Y. Cheng, M. Fukuda, V.R. Whiteside, M.C. Debnath, P.J. Vallely, T.D. Mishima, M.B. Santos, K. Hossain, S. Hatch, H.Y. Liu, and I.R. Sellers, Sol. Energy Mater. Sol. Cells 147, 94 (2016).CrossRefGoogle Scholar
  11. 11.
    A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L.J. Caballero, L. Cuadra, and J.L. Balenzategui, Appl. Phys. Lett. 87, 083505 (2005).CrossRefGoogle Scholar
  12. 12.
    A. Martí, E. Antolín, C.R. Stanley, C.D. Farmer, N. López, P. Díaz, E. Cánovas, P.G. Linares, and A. Luque, Phys. Rev. Lett. 97, 247701 (2006).CrossRefGoogle Scholar
  13. 13.
    R.B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L.F. Lester, and D.L. Huffaker, Appl. Phys. Lett. 90, 173125 (2007).CrossRefGoogle Scholar
  14. 14.
    G. Wei and S.R. Forrest, Nano Lett. 7, 218 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Luque and A. Martí, Electron. Lett. 44, 943 (2008).CrossRefGoogle Scholar
  16. 16.
    N. Ahsan, N. Miyashita, M.M. Islam, K.M. Yu, W. Walukiewicz, and Y. Okada, Appl. Phys. Lett. 100, 172111 (2012).CrossRefGoogle Scholar
  17. 17.
    J. Hwang, K. Lee, A. Teran, S. Forrest, J.D. Phillips, A.J. Martin, and J. Millunchick, Phys. Rev. Appl. 1, 051003 (2014).CrossRefGoogle Scholar
  18. 18.
    K. Sablon, J. Little, N. Vagidov, Y. Li, V. Mitin, and A. Sergeev, Appl. Phys. Lett. 104, 253904 (2014).CrossRefGoogle Scholar
  19. 19.
    A.M. Vega, E. Antolin, P.G. Linares, I. Ramiro, I. Artacho, E. López, E. Hernández, M.J. Mendes, A.V. Mellor, I. Tobías, D.F. Marron, C. Tablero, A.B. Cristóbal, C.G. Bailey, M. Gonzalez, M.K. Yakes, M.P. Lumb, R.J. Walters, and A. Luque, Proc. SPE 8620, 86200J (2013).CrossRefGoogle Scholar
  20. 20.
    A. Marti, L. Cuadra, and A. Luque, IEEE Trans. Electron. Dev. 48, 2394 (2001).CrossRefGoogle Scholar
  21. 21.
    A.M. Kechiantz, L.M. Kocharyan, and H.M. Kechiyants, Nanotechnology 18, 405401 (2007).CrossRefGoogle Scholar
  22. 22.
    P.G. Linares, A. Martí, E. Antolín, C.D. Farmer, í. Ramiro, C.R. Stanley, and A. Luque, Sol. Energy Mater. Sol. Cells 98, 240 (2012).CrossRefGoogle Scholar
  23. 23.
    A. Varghese, M. Yakimov, V. Tokranov, V. Mitin, K. Sablon, A. Sergeev, and S. Oktyabrsky, Nanoscale 8, 7248 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Dhomkar, I.L. Kuskovsky, U. Manna, I.C. Noyan, and M.C. Tamargo, J. Vac. Sci. Technol. B 31, 03C119 (2013).CrossRefGoogle Scholar
  25. 25.
    S. Dhomkar, U. Manna, I.C. Noyan, M.C. Tamargo, and I.L. Kuskovsky, Appl. Phys. Lett. 103, 181905 (2013).CrossRefGoogle Scholar
  26. 26.
    S. Dhomkar, U. Manna, L. Peng, R. Moug, I.C. Noyan, M.C. Tamargo, and I.L. Kuskovsky, Sol. Energy Mater. Sol. Cells 117, 604 (2013).CrossRefGoogle Scholar
  27. 27.
    S. Dhomkar, Growth and Characterization of Type-II Submonolayer ZnCdTe/ZnCdSe Quantum Dot Superlattices for Efficient Intermediate Band Solar Cells (City University of New York (CUNY), CUNY Academic Works), Dissertation (2015).Google Scholar
  28. 28.
    Y.D. Kim, M.V. Klein, S.F. Ren, Y.C. Chang, H. Luo, N. Samarth, and J.K. Furdyna, Phys. Rev. B 49, 7262 (1994).CrossRefGoogle Scholar
  29. 29.
    I.V. Ponomarev, L.I. Deych, V.A. Shuvayev, and A.A. Lisyansky, Physica E 25, 539 (2005).CrossRefGoogle Scholar
  30. 30.
    S. Dhomkar, H. Ji, B. Roy, V. Deligiannakis, A. Wang, M.C. Tamargo, and I.L. Kuskovsky, J. Cryst. Growth 422, 8 (2015).CrossRefGoogle Scholar
  31. 31.
    S. Dhomkar, N. Vaxelaire, H. Ji, V. Shuvayev, M.C. Tamargo, I.L. Kuskovsky, and I.C. Noyan, Appl. Phys. Lett. 107, 251905 (2015).CrossRefGoogle Scholar
  32. 32.
    A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).CrossRefGoogle Scholar
  33. 33.
    V.D. Jovanović, Z. Ikonić, D. Indjin, P. Harrison, V. Milanović, and R.A. Soref, J. Appl. Phys. 93, 3194 (2003).CrossRefGoogle Scholar
  34. 34.
    K.H. Yoo, J.D. Albrecht, and L.R. Ram-Mohan, Am. J. Phys. 78, 589 (2010).CrossRefGoogle Scholar
  35. 35.
    S.L. Chuang, Physics of Photonic Devices, 2nd ed. (Hoboken: Wiley, 2012), pp. 132–142.Google Scholar
  36. 36.
    F.S. Hickernell and W.R. Gayton, J. Appl. Phys. 37, 462 (1966).CrossRefGoogle Scholar
  37. 37.
    H.J. Lozykowski and V.K. Shastri, J. Appl. Phys. 69, 3235 (1991).CrossRefGoogle Scholar
  38. 38.
    J.-H. Yang, S. Chen, W.-J. Yin, X.G. Gong, A. Walsh, and S.-H. Wei, Phys. Rev. B. 79, 245202 (2009).CrossRefGoogle Scholar
  39. 39.
    S. Adachi and T. Taguchi, Phys. Rev. B. 43, 9569 (1991).CrossRefGoogle Scholar
  40. 40.
    K. Sato and S. Adachi, J. Appl. Phys. 73, 926 (1993).CrossRefGoogle Scholar
  41. 41.
    W. Faschinger, S. Ferreira, and H. Sitter, Appl. Phys. Lett. 64, 2682 (1994).CrossRefGoogle Scholar
  42. 42.
    E.J. Tyrrell and J.M. Smith, Phys. Rev. B. 84, 165328 (2011).CrossRefGoogle Scholar
  43. 43.
    Y.-H. Li, X.G. Gong, and S.-H. Wei, Phys. Rev. B 73, 245206 (2006).CrossRefGoogle Scholar
  44. 44.
    C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989).CrossRefGoogle Scholar
  45. 45.
    J. Puls, M. Rabe, H.J. Wünsche, and F. Henneberger, Phys. Rev. B 60, R16303 (1999).CrossRefGoogle Scholar
  46. 46.
    S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003).CrossRefGoogle Scholar
  47. 47.
    M.J.S.P. Brasil, M.C. Tamargo, R.E. Nahory, H.L. Gilchrist, and R.J. Martin, Appl. Phys. Lett. 59, 1206 (1991).CrossRefGoogle Scholar
  48. 48.
    N. Muthukumarasamy, S. Jayakumar, M.D. Kannan, and R. Balasundaraprabhu, Sol. Energy 83, 522 (2009).CrossRefGoogle Scholar
  49. 49.
    A. Luque, P.G. Linares, A. Mellor, V. Andreev, and A. Marti, Appl. Phys. Lett. 103, 123901 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • C. M. Imperato
    • 1
  • G. A. Ranepura
    • 1
  • L. I. Deych
    • 1
    • 2
  • I. L. Kuskovsky
    • 1
    • 2
  1. 1.Department of PhysicsQueens College of CUNYQueensUSA
  2. 2.Physics ProgramThe Graduate Center of CUNYNew YorkUSA

Personalised recommendations