Skip to main content
Log in

Sol–Gel Synthesis of Fe-Doped TiO2 Nanocrystals

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fe-doped TiO2 powders were synthesized by the sol–gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18–39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol–gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase/rutile) of Fe-doped TiO2 by this facile method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.O. Robichaud, A.E. Uyar, M.R. Darby, K.G. Zycker, and M.R. Wiesner, Environ. Sci. Technol. 43, 4227 (2009).

    Article  Google Scholar 

  2. M. Dastpak, M. Farahmandjou, and T.P. Firoozabadi, J. Supercond. Nov. Magn. 29, 2925 (2016).

    Article  Google Scholar 

  3. M. Farahmandjou and M. Zarinkamar, J. Ceram. Process. Res. 17, 166 (2016).

    Google Scholar 

  4. M. Farahmandjou and N. Golabiyan, J. Ceram. Process. Res. 16, 237 (2015).

    Google Scholar 

  5. M. Farahmandjou, S. Honarbakhsh, and S. Behrouzinia, Phys. Chem. Res. 4, 655 (2016).

    Google Scholar 

  6. M. Farahmandjou, M. Zarinkamar, and T.P. Firoozabadi, Rev. Mex. Fis. 62, 76 (2016).

    Google Scholar 

  7. M. Dastpak, M. Farahmandjou, and T.P. Firoozabadi, J. Supercond Nov. Magn. 29, 849 (2016).

    Article  Google Scholar 

  8. M. Farahmandjou and F. Soflaee, Chin. J. Phys. 53, 080801 (2015).

    Google Scholar 

  9. M. Farahmandjou, Acta Phys. Pol. A 123, 277 (2013).

    Article  Google Scholar 

  10. A. Fujishima, T.N. Rao, and D.A. Truk, J. Photochem. Photobiol. C Photochem. Rev. 1, 1 (2000).

    Article  Google Scholar 

  11. X. Chen and S.S. Mao, Chem. Rev. 107, 2891 (2007).

    Article  Google Scholar 

  12. B.M. Reddy, I. Ganesh, and A. Khan, J. Mol. Catal. A Chem. 223, 295 (2004).

    Article  Google Scholar 

  13. K. Josep Antony Raj and B. Vishwanathan, Indian J. Chem. 48, 1378 (2009).

    Google Scholar 

  14. L. Gang, W. Xuewen, C. Zhigang, C. Hui-Ming, and L.G. Qing, Colloid Interface Sci. 329, 331 (2009).

    Article  Google Scholar 

  15. M. Ramazani, M. Farahmandjou, and T.P. Firoozabadi, Phys. Chem. Res. 3, 293 (2015).

    Google Scholar 

  16. M. Ramazani, M. Farahmandjou, and T.P. Firoozabadi, Int. J. Nanosci. Nanotechnol. 11, 115 (2015).

    Google Scholar 

  17. J. Yu, Q. Xiang, and M. Zhou, Appl. Catal. B Environ. 90, 595 (2009).

    Article  Google Scholar 

  18. U.G. Akpan and B.H. Hameed, Appl. Catal. A 375, 1 (2010).

    Article  Google Scholar 

  19. W.Y. Choi, A. Termin, and M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994).

    Article  Google Scholar 

  20. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2011).

    Article  Google Scholar 

  21. J. Choi, H. Park, and M. Hoffmann, J. Phys. Chem. C 114, 783 (2010).

    Article  Google Scholar 

  22. A. Kachina, E. Puzenat, S. Ould-Chikh, C. Geantet, P. Delichere, and P. Afanasiev, Chem. Mater. 24, 636 (2012).

    Article  Google Scholar 

  23. J. Zhang, C. Pan, P. Fang, J. Wei, R. Xiong, and A.C.S. Appl, Mater. Interfaces 2, 1173 (2010).

    Article  Google Scholar 

  24. H. Liu, Y. Wu, J. Zhang, and A.C.S. Appl, Mater. Interfaces 3, 1757 (2011).

    Article  Google Scholar 

  25. D.R. Pulsipher, I.T. Martin, E.R. Fisher, and A.C.S. Appl, Mater. Interfaces 2, 1743 (2010).

    Article  Google Scholar 

  26. M.A.T. Izmajlowicz, A.J. Flewitt, W.I. Milne, and N.A. Morrison, J. Appl. Phys. 94, 7535 (2003).

    Article  Google Scholar 

  27. M. Epifani, C. Giannini, L. Tapfer, and L. Vasanelli, J. Am. Ceram. Soc. 83, 2385 (2000).

    Article  Google Scholar 

  28. B. Khoshnevisan, M.B. Marami, and M. Farahmandjou, Chin. Phys. Lett. 35, 027501 (2018).

    Article  Google Scholar 

  29. N. Bouazizi, R. Bargougui, T. Boudharaa, M. Khelil, A. Benghnia, L. Labiadh, R.B. Slama, B. Chaouachi, S. Ammar, and A. Azzouz, Ceram. Int. 42, 9413 (2016).

    Article  Google Scholar 

  30. N. Bouazizi, F. Ajala, M. Khelil, H. Lachheb, K. Khirouni, A. Houas, and A. Azzouz, J. Mater. Sci. Mater. Electron. 27, 11168 (2016).

    Article  Google Scholar 

  31. I. Ganesh, P. Kumar, K. Gupta, S.C. Panakati, R. Kalathur, P. Gadhe, and S. Govindan, Proc. Appl. Ceram. 6, 21 (2012).

    Article  Google Scholar 

  32. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, and M. Anpo, Catal. Today 84, 191 (2003).

    Article  Google Scholar 

  33. X.H. Wang, J.-G. Li, H. Kamiyama, and T. Ishigaki, Thin Solid Films 278, 506 (2006).

    Google Scholar 

  34. C.C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, A. Szatvanyi, and M. Gartner, Thin Solid Films 433, 186 (2003).

    Article  Google Scholar 

  35. M. Sokmen, F. Candan, and Z. Sumer, J. Photochem. Photobiol. Chem. 143, 241 (2001).

    Article  Google Scholar 

  36. I. Djerdj and A.M. Tonejc, J. Alloy Compd. 413, 159 (2006).

    Article  Google Scholar 

  37. J. Moser, M. Gratzel, and R. Gallay, Helv. Chim. Acta 70, 1596 (1987).

    Article  Google Scholar 

  38. W. Li, A.I. Frenkel, J.C. Woicik, C. Ni, and S.I. Shah, Phys. Rev. B 72, 155315 (2005).

    Article  Google Scholar 

  39. R.S. Santos, G.A. Faria, C. Giles, C.A.P. Leite, H.S. Barbosa, M.A.Z. Arruda, C. Longo, and A.C.S. Appl, Mater. Interfaces 4, 5555 (2012).

    Article  Google Scholar 

  40. D. Reyes-corondo, G. Rodriguez-gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, Nanotechnology 19, 145605 (2008).

    Article  Google Scholar 

  41. Y.H. Zhang and A. Reller, J. Mater. Chem. 11, 2537 (2001).

    Article  Google Scholar 

  42. J. Zhu, W. Zheng, B. He, J. Zhang, and M. Anpo, J. Mol. Catal A 216, 35 (2004).

    Article  Google Scholar 

  43. C.Y. Wang, C. Bottcer, D.W. Bahnemann, and J.K. Dohrmann, J. Mater. Chem. 13, 2322 (2003).

    Article  Google Scholar 

  44. M. Hiran, T. Joji, M. Inagaki, and H. Iwata, J. Am. Ceram. Soc. 87, 35 (2004).

    Article  Google Scholar 

  45. R. Alexandrescu, I. Morjan, M. Scarisoreanu, R. Birjega, E. Popovici, I. Soare, L. Gavrila-Florescu, I. Voicu, I. Sandu, F. Dumitrache, G. Prodan, E. Vasile, and E. Figgemeier, Thin Solid Films 515, 8438 (2007).

    Article  Google Scholar 

  46. X. Zhang, M. Zhou, and L. Lei, Catal. Commun. 7, 427 (2006).

    Article  Google Scholar 

  47. S. Liu, X. Liu, Y. Chen, and R. Jiang, J. Alloys Compd. 506, 877 (2010).

    Article  Google Scholar 

  48. S. Reginaldo, S. Santos, A. Guilherme, A.P. Carlos, S. Leite, S. Herbert, A.Z. Marco, C. Longo, and A.C.S. Appl, Mater. Interfaces 4, 5555 (2012).

    Article  Google Scholar 

  49. T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed, and M. Muneer, Mater. Res. Express 4, 015022 (2017).

    Article  Google Scholar 

  50. Y. Yang, T. Yu, J. Wang, W. Zheng, and Y. Cao, Cryst. Eng. Comm. 19, 1100 (2017).

    Article  Google Scholar 

  51. R.J. Ramalingam, P. Arunachalam, T. Radhika, K.R. Anju, K.C. Nimitha, and H.A. Al-Lohedan, Int. J. Electrochem. Sci. 12, 797 (2017).

    Article  Google Scholar 

  52. C.L. Luu, Q.T. Nguyen, and S.T. Ho, Adv. Nat. Sci. Nanosci. Nanotechnol 1, 015008 (2010).

    Article  Google Scholar 

  53. A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).

    Article  Google Scholar 

  54. Q. Chen, C. Xue, X. Li, and Y. Wang, Mater. Sci. Forum 743, 367 (2013).

    Article  Google Scholar 

  55. S. Khatoon, I.A. Wani, J. Ahmed, T. Magdaleno, O.A. Al-Hartomy, and T. Ahmad, Mater. Chem. Phys. 138, 519 (2013).

    Article  Google Scholar 

  56. W. Siripala and M. Tomkieviez, J. Electrochem. Soc. 129, 1240 (1982).

    Article  Google Scholar 

  57. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Chem. Rev. 114, 9919 (2014).

    Article  Google Scholar 

  58. N.D. Abazovic, M.I. Comor, M.D. Dramicanin, D.J. Jovanovic, S.P. Ahrenkiel, and J.M. Nedeljkovic, J. Phys. Chem. B 110, 25366 (2006).

    Article  Google Scholar 

  59. N.D. Abazovic´, I.A. Ruvarac-Bugarcˇic´, M.I. Comor, N. Bibic´, S.P. Ahrenkiel, and J.M. Nedeljkovic´, Opt. Mater. 30, 1139 (2008).

    Article  Google Scholar 

  60. D. Beydoun, R. Amal, G. Low, and S. McEvoy, J. Nanopart. Res. 1, 439 (1999).

    Article  Google Scholar 

  61. L. Kernazhitsky, V. Shymanovska, V. Naumov, V. Chernyak, T. Khalyavka, and V. Kshnyakin, Ukr. J. Phys. Opt. 9, 197 (2008).

    Article  Google Scholar 

  62. W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, J. Ding, X. Zhou, H. Zhao, Y. Li, and W. Zhang, Nano Micro Lett. 3, 34 (2011).

    Article  Google Scholar 

  63. S. Naghibia, S. Vahed, and O. Torabi, J. Adv. Mater. Process. 2, 55 (2014).

    Google Scholar 

  64. W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, J. Ding, W. Zhang, X. Zhou, H. Zhao, and Y. Li, Nano-Micro Lett. 3, 20 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Farahmandjou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marami, M.B., Farahmandjou, M. & Khoshnevisan, B. Sol–Gel Synthesis of Fe-Doped TiO2 Nanocrystals. J. Electron. Mater. 47, 3741–3748 (2018). https://doi.org/10.1007/s11664-018-6234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6234-5

Keywords

Navigation