Sol–Gel Synthesis of Fe-Doped TiO2 Nanocrystals
- 12 Downloads
Abstract
Fe-doped TiO2 powders were synthesized by the sol–gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18–39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol–gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase/rutile) of Fe-doped TiO2 by this facile method.
Keywords
Fe-doped TiO2 sol–gel characterization XRD band gap photoluminescencePreview
Unable to display preview. Download preview PDF.
References
- 1.C.O. Robichaud, A.E. Uyar, M.R. Darby, K.G. Zycker, and M.R. Wiesner, Environ. Sci. Technol. 43, 4227 (2009).CrossRefGoogle Scholar
- 2.M. Dastpak, M. Farahmandjou, and T.P. Firoozabadi, J. Supercond. Nov. Magn. 29, 2925 (2016).CrossRefGoogle Scholar
- 3.M. Farahmandjou and M. Zarinkamar, J. Ceram. Process. Res. 17, 166 (2016).Google Scholar
- 4.M. Farahmandjou and N. Golabiyan, J. Ceram. Process. Res. 16, 237 (2015).Google Scholar
- 5.M. Farahmandjou, S. Honarbakhsh, and S. Behrouzinia, Phys. Chem. Res. 4, 655 (2016).Google Scholar
- 6.M. Farahmandjou, M. Zarinkamar, and T.P. Firoozabadi, Rev. Mex. Fis. 62, 76 (2016).Google Scholar
- 7.M. Dastpak, M. Farahmandjou, and T.P. Firoozabadi, J. Supercond Nov. Magn. 29, 849 (2016).CrossRefGoogle Scholar
- 8.M. Farahmandjou and F. Soflaee, Chin. J. Phys. 53, 080801 (2015).Google Scholar
- 9.M. Farahmandjou, Acta Phys. Pol. A 123, 277 (2013).CrossRefGoogle Scholar
- 10.A. Fujishima, T.N. Rao, and D.A. Truk, J. Photochem. Photobiol. C Photochem. Rev. 1, 1 (2000).CrossRefGoogle Scholar
- 11.X. Chen and S.S. Mao, Chem. Rev. 107, 2891 (2007).CrossRefGoogle Scholar
- 12.B.M. Reddy, I. Ganesh, and A. Khan, J. Mol. Catal. A Chem. 223, 295 (2004).CrossRefGoogle Scholar
- 13.K. Josep Antony Raj and B. Vishwanathan, Indian J. Chem. 48, 1378 (2009).Google Scholar
- 14.L. Gang, W. Xuewen, C. Zhigang, C. Hui-Ming, and L.G. Qing, Colloid Interface Sci. 329, 331 (2009).CrossRefGoogle Scholar
- 15.M. Ramazani, M. Farahmandjou, and T.P. Firoozabadi, Phys. Chem. Res. 3, 293 (2015).Google Scholar
- 16.M. Ramazani, M. Farahmandjou, and T.P. Firoozabadi, Int. J. Nanosci. Nanotechnol. 11, 115 (2015).Google Scholar
- 17.J. Yu, Q. Xiang, and M. Zhou, Appl. Catal. B Environ. 90, 595 (2009).CrossRefGoogle Scholar
- 18.U.G. Akpan and B.H. Hameed, Appl. Catal. A 375, 1 (2010).CrossRefGoogle Scholar
- 19.W.Y. Choi, A. Termin, and M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994).CrossRefGoogle Scholar
- 20.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2011).CrossRefGoogle Scholar
- 21.J. Choi, H. Park, and M. Hoffmann, J. Phys. Chem. C 114, 783 (2010).CrossRefGoogle Scholar
- 22.A. Kachina, E. Puzenat, S. Ould-Chikh, C. Geantet, P. Delichere, and P. Afanasiev, Chem. Mater. 24, 636 (2012).CrossRefGoogle Scholar
- 23.J. Zhang, C. Pan, P. Fang, J. Wei, R. Xiong, and A.C.S. Appl, Mater. Interfaces 2, 1173 (2010).CrossRefGoogle Scholar
- 24.H. Liu, Y. Wu, J. Zhang, and A.C.S. Appl, Mater. Interfaces 3, 1757 (2011).CrossRefGoogle Scholar
- 25.D.R. Pulsipher, I.T. Martin, E.R. Fisher, and A.C.S. Appl, Mater. Interfaces 2, 1743 (2010).CrossRefGoogle Scholar
- 26.M.A.T. Izmajlowicz, A.J. Flewitt, W.I. Milne, and N.A. Morrison, J. Appl. Phys. 94, 7535 (2003).CrossRefGoogle Scholar
- 27.M. Epifani, C. Giannini, L. Tapfer, and L. Vasanelli, J. Am. Ceram. Soc. 83, 2385 (2000).CrossRefGoogle Scholar
- 28.B. Khoshnevisan, M.B. Marami, and M. Farahmandjou, Chin. Phys. Lett. 35, 027501 (2018).CrossRefGoogle Scholar
- 29.N. Bouazizi, R. Bargougui, T. Boudharaa, M. Khelil, A. Benghnia, L. Labiadh, R.B. Slama, B. Chaouachi, S. Ammar, and A. Azzouz, Ceram. Int. 42, 9413 (2016).CrossRefGoogle Scholar
- 30.N. Bouazizi, F. Ajala, M. Khelil, H. Lachheb, K. Khirouni, A. Houas, and A. Azzouz, J. Mater. Sci. Mater. Electron. 27, 11168 (2016).CrossRefGoogle Scholar
- 31.I. Ganesh, P. Kumar, K. Gupta, S.C. Panakati, R. Kalathur, P. Gadhe, and S. Govindan, Proc. Appl. Ceram. 6, 21 (2012).CrossRefGoogle Scholar
- 32.H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, and M. Anpo, Catal. Today 84, 191 (2003).CrossRefGoogle Scholar
- 33.X.H. Wang, J.-G. Li, H. Kamiyama, and T. Ishigaki, Thin Solid Films 278, 506 (2006).Google Scholar
- 34.C.C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, A. Szatvanyi, and M. Gartner, Thin Solid Films 433, 186 (2003).CrossRefGoogle Scholar
- 35.M. Sokmen, F. Candan, and Z. Sumer, J. Photochem. Photobiol. Chem. 143, 241 (2001).CrossRefGoogle Scholar
- 36.I. Djerdj and A.M. Tonejc, J. Alloy Compd. 413, 159 (2006).CrossRefGoogle Scholar
- 37.J. Moser, M. Gratzel, and R. Gallay, Helv. Chim. Acta 70, 1596 (1987).CrossRefGoogle Scholar
- 38.W. Li, A.I. Frenkel, J.C. Woicik, C. Ni, and S.I. Shah, Phys. Rev. B 72, 155315 (2005).CrossRefGoogle Scholar
- 39.R.S. Santos, G.A. Faria, C. Giles, C.A.P. Leite, H.S. Barbosa, M.A.Z. Arruda, C. Longo, and A.C.S. Appl, Mater. Interfaces 4, 5555 (2012).CrossRefGoogle Scholar
- 40.D. Reyes-corondo, G. Rodriguez-gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, Nanotechnology 19, 145605 (2008).CrossRefGoogle Scholar
- 41.Y.H. Zhang and A. Reller, J. Mater. Chem. 11, 2537 (2001).CrossRefGoogle Scholar
- 42.J. Zhu, W. Zheng, B. He, J. Zhang, and M. Anpo, J. Mol. Catal A 216, 35 (2004).CrossRefGoogle Scholar
- 43.C.Y. Wang, C. Bottcer, D.W. Bahnemann, and J.K. Dohrmann, J. Mater. Chem. 13, 2322 (2003).CrossRefGoogle Scholar
- 44.M. Hiran, T. Joji, M. Inagaki, and H. Iwata, J. Am. Ceram. Soc. 87, 35 (2004).CrossRefGoogle Scholar
- 45.R. Alexandrescu, I. Morjan, M. Scarisoreanu, R. Birjega, E. Popovici, I. Soare, L. Gavrila-Florescu, I. Voicu, I. Sandu, F. Dumitrache, G. Prodan, E. Vasile, and E. Figgemeier, Thin Solid Films 515, 8438 (2007).CrossRefGoogle Scholar
- 46.X. Zhang, M. Zhou, and L. Lei, Catal. Commun. 7, 427 (2006).CrossRefGoogle Scholar
- 47.S. Liu, X. Liu, Y. Chen, and R. Jiang, J. Alloys Compd. 506, 877 (2010).CrossRefGoogle Scholar
- 48.S. Reginaldo, S. Santos, A. Guilherme, A.P. Carlos, S. Leite, S. Herbert, A.Z. Marco, C. Longo, and A.C.S. Appl, Mater. Interfaces 4, 5555 (2012).CrossRefGoogle Scholar
- 49.T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed, and M. Muneer, Mater. Res. Express 4, 015022 (2017).CrossRefGoogle Scholar
- 50.Y. Yang, T. Yu, J. Wang, W. Zheng, and Y. Cao, Cryst. Eng. Comm. 19, 1100 (2017).CrossRefGoogle Scholar
- 51.R.J. Ramalingam, P. Arunachalam, T. Radhika, K.R. Anju, K.C. Nimitha, and H.A. Al-Lohedan, Int. J. Electrochem. Sci. 12, 797 (2017).CrossRefGoogle Scholar
- 52.C.L. Luu, Q.T. Nguyen, and S.T. Ho, Adv. Nat. Sci. Nanosci. Nanotechnol 1, 015008 (2010).CrossRefGoogle Scholar
- 53.A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).CrossRefGoogle Scholar
- 54.Q. Chen, C. Xue, X. Li, and Y. Wang, Mater. Sci. Forum 743, 367 (2013).CrossRefGoogle Scholar
- 55.S. Khatoon, I.A. Wani, J. Ahmed, T. Magdaleno, O.A. Al-Hartomy, and T. Ahmad, Mater. Chem. Phys. 138, 519 (2013).CrossRefGoogle Scholar
- 56.W. Siripala and M. Tomkieviez, J. Electrochem. Soc. 129, 1240 (1982).CrossRefGoogle Scholar
- 57.J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Chem. Rev. 114, 9919 (2014).CrossRefGoogle Scholar
- 58.N.D. Abazovic, M.I. Comor, M.D. Dramicanin, D.J. Jovanovic, S.P. Ahrenkiel, and J.M. Nedeljkovic, J. Phys. Chem. B 110, 25366 (2006).CrossRefGoogle Scholar
- 59.N.D. Abazovic´, I.A. Ruvarac-Bugarcˇic´, M.I. Comor, N. Bibic´, S.P. Ahrenkiel, and J.M. Nedeljkovic´, Opt. Mater. 30, 1139 (2008).CrossRefGoogle Scholar
- 60.D. Beydoun, R. Amal, G. Low, and S. McEvoy, J. Nanopart. Res. 1, 439 (1999).CrossRefGoogle Scholar
- 61.L. Kernazhitsky, V. Shymanovska, V. Naumov, V. Chernyak, T. Khalyavka, and V. Kshnyakin, Ukr. J. Phys. Opt. 9, 197 (2008).CrossRefGoogle Scholar
- 62.W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, J. Ding, X. Zhou, H. Zhao, Y. Li, and W. Zhang, Nano Micro Lett. 3, 34 (2011).CrossRefGoogle Scholar
- 63.S. Naghibia, S. Vahed, and O. Torabi, J. Adv. Mater. Process. 2, 55 (2014).Google Scholar
- 64.W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, J. Ding, W. Zhang, X. Zhou, H. Zhao, and Y. Li, Nano-Micro Lett. 3, 20 (2011).CrossRefGoogle Scholar