Journal of Electronic Materials

, Volume 47, Issue 7, pp 3717–3726 | Cite as

Synthesis and Characterization of Cross-Linked Nanocomposite as a Gate Dielectric for p-Type Silicon Field-Effect Transistor

  • Adeleh Hashemi
  • Ali Bahari
  • Shahram Ghasemi


A good cross-linking between a povidone–silicon oxide nanocomposite has been created using a polar solvent. Furthermore, the effect of annealing temperatures (150°C, 200°C, and 240°C) on the solution-processed povidone–silicon oxide dielectric films has been studied. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy were applied to identify the chemical interactions of the nanocomposite. Morphology of the thin films was examined using atomic force microscopy. Electrical parameters of field effect transistors (FETs) were calculated on the basis of the information obtained from current–voltage (IV) and capacitance–voltage (CV) measurements in the metal–insulator–semiconductor structure. Nanocomposite films had very low surface roughness (0.036–0.084 nm). Si-O-Si and Si-O-C covalent bonds as well as Si-OH hydrogen bonds were formed in the nanocomposite structure. High hole mobilities (1.15–3.87 cm2 V−1 s−1) and low leakage current densities were obtained for the p-type Si FETs. The decrease in the Si-OH hydrogen bonds in the dielectric film annealed at 150°C led to a decrease in capacitance and leakage current as well as threshold voltage, and resulted in an increase in mobility and on/off current ratio. By further increasing the annealing temperatures (200°C and 240°C), the binding energies of all the bonds were shifted toward lower values. Therefore, it was concluded that many bonds could have degraded and that defects might have formed in the dielectric film nanostructure leading to a decline in the electrical parameters of the FETs.


p-Type Si FET gate dielectric annealing temperature leakage current charge carrier mobility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.-R. Wu, T.-H. Tsai, and D.-S. Wuu, Appl. Surf. Sci. 354, 216 (2015).CrossRefGoogle Scholar
  2. 2.
    A. Srivastava, O. Mangla, and R.K. Nahar, J. Mater. Sci. Mater. Electron. 25, 3257 (2014).CrossRefGoogle Scholar
  3. 3.
    N. Tripathi, V. Jindal, F. Shahedipour-Sandvik, S. Rajan, and A. Vert, Solid-State Electron. 54, 1291 (2010).CrossRefGoogle Scholar
  4. 4.
    Z. Khorshidi, A. Bahari, and R. Gholipur, J. Electron. Mater. 43, 4349 (2014).CrossRefGoogle Scholar
  5. 5.
    B.H. Lee, K.K. Im, K.H. Lee, S. Im, and M.M. Sung, Thin Solid Films 517, 4056 (2009).CrossRefGoogle Scholar
  6. 6.
    A.Z. Kattamis, R.J. Holmes, I.-C. Cheng, K. Long, J.C. Sturm, S.R. Forrest, and S. Wagner, J. IEEE Electron Device Lett. 27, 49 (2006).CrossRefGoogle Scholar
  7. 7.
    K.-Y. Chan, J. Kirchhoff, A. Gordijn, D. Knipp, and H. Stiebig, Thin Solid Films 517, 6383 (2009).CrossRefGoogle Scholar
  8. 8.
    A. Hashemi, A. Bahari, and S. Ghasemi, Appl. Surf. Sci. 416, 234 (2017).CrossRefGoogle Scholar
  9. 9.
    A. Bahari, M. Roeinfard, and A. Ramzannezhad, J. Mater. Sci. Electron. 27, 9363 (2016).CrossRefGoogle Scholar
  10. 10.
    H.-W. Lu and J.-G. Hwu, Appl. Phys. A 115, 837 (2014).CrossRefGoogle Scholar
  11. 11.
    Z. Bao and J. Locklin, Organic Field-Effect Transistors (Berlin: Springer, 2007), pp. 341–371.CrossRefGoogle Scholar
  12. 12.
    E. Lee, J. Jung, A. Cgoi, X. Bulliard, J.-H. Kim, Y. Yun, J. Kim, J. Park, S. Lee, and Y. Kang, RSC Adv. 7, 17841 (2017).CrossRefGoogle Scholar
  13. 13.
    T. Umeda, D. Kumaki, and S. Tokito, Org. Electron. 9, 545 (2008).CrossRefGoogle Scholar
  14. 14.
    S. Faraji, T. Hashimoto, M.L. Turner, and L. Majewski, Org. Electron. 17, 178 (2015).CrossRefGoogle Scholar
  15. 15.
    X. Wu, F. Fei, Z. Chen, W. Su, and Z. Cui, Compos. Sci. Technol. 94, 117 (2014).CrossRefGoogle Scholar
  16. 16.
    K. Takagi, T. Nagase, T. Kobayashi, and H. Naito, Org. Electron. 32, 65 (2016).CrossRefGoogle Scholar
  17. 17.
    M. Makrygianni, A. Ainsebaa, M. Nagel, S. Sanaur, Y.S. Raptis, I. Zergioti, and D. Tsamaki, Appl. Surf. Sci. 390, 823 (2016).CrossRefGoogle Scholar
  18. 18.
    M. Shahbazi, A. Bahari, and S. Ghasemi, Synth. Met. 221, 332 (2016).CrossRefGoogle Scholar
  19. 19.
    V.R. Reddy, J. Appl. Phys. A. 116, 1379 (2014).CrossRefGoogle Scholar
  20. 20.
    F.-Y. Yang, K.-J. Chang, M.-Y. Hsu, and C.-C. Liu, J. Mater. Chem. 18, 5927 (2008).CrossRefGoogle Scholar
  21. 21.
    S.H. Kim, S.Y. Yang, W. Shin, H. Jeon, J.W. Lee, K.P. Hong, and C.E. Park, Appl. Phys. Lett. 89, 183516 (2006).CrossRefGoogle Scholar
  22. 22.
    S. Faraji, E. Danesh, D. Julate, and M.L. Yurner, Appl. Phys. 49, 185102 (2016).Google Scholar
  23. 23.
    M. Shahbazi, A. Bahari, and S. Ghasem, Org. Electron. 32, 100 (2016).CrossRefGoogle Scholar
  24. 24.
    H. Najafi-Ashtiani, A. Bahari, and S. Ghasemi, Org. Electron. 37, 213 (2016).CrossRefGoogle Scholar
  25. 25.
    H. Najafi-Ashtiani and A. Bahari, Synth. Met. 217, 19 (2016).CrossRefGoogle Scholar
  26. 26.
    R. Gholipur and A. Bahari, Appl. Phys. A 122, 536 (2016).CrossRefGoogle Scholar
  27. 27.
    A. Hashemi and A. Bahari, S, Ghasemi. J. Mater. Sci. Mater. Electron. 28, 13313 (2017).CrossRefGoogle Scholar
  28. 28.
    M.D. Morales-Acosta, C.G. Alvarado-Beltran, M.A. Quevedo-Lopez, and B.E. Gnade, J. Non-Cryst. Solids 362, 124 (2013).CrossRefGoogle Scholar
  29. 29.
    M.D. Morales-Acosta, M.A. Quevedo-Lopez, B.E. Gnade, and R. Ramirez-Bon, J. Sol-Gel. Sci. Technol. 58, 218 (2011).CrossRefGoogle Scholar
  30. 30.
    L.S. Cardoso, J.C. Stefanelo, and R.M. Faria, Synth. Met. 220, 286 (2016).CrossRefGoogle Scholar
  31. 31.
    C.-M. Keum, J.-H. Bae, M.-H. Kim, W. Choi, and S.-D. Lee, Org. Electron. 13, 778 (2012).CrossRefGoogle Scholar
  32. 32.
    S. Kim, A. Kim, K.-S. Jang, S. Yoo, J.-W. Ka, J. Kim, M.H. Yi, J.C. Won, S.-K. Hong, and Y.H. Kim, Synth. Met. 220, 311 (2016).CrossRefGoogle Scholar
  33. 33.
    Michael A. Derenge, K.W. Kirchner, K.A. Jones, P. Suvarna, and S. Shahedipour-Sandvik, J. Solid-State Electron. 101, 23 (2014).CrossRefGoogle Scholar
  34. 34.
    A. Hashemi and A. Bahari, Appl. Phys. A 123, 535 (2017).CrossRefGoogle Scholar
  35. 35.
    B. Gao and Z. Wang, J. Colloid Surf. B. Biointerfaces 79, 446 (2010).CrossRefGoogle Scholar
  36. 36.
    B. Arkles, Silane Coupling Agent (Morrisville: Gelest. Inc, 2006), pp. 2–12.Google Scholar
  37. 37.
    F. Jolly, F. Rochet, G. Dufour, C. Grupp, and A. Table-Ibrahimi, J. Non-Cryst. Solids 280, 150 (2001).CrossRefGoogle Scholar
  38. 38.
    K.V. Egorov, Y.Y. Lebedinskii, A.M. Markeeva, and O.M. Orlov, Appl. Surf. Sci. 356, 454 (2015).CrossRefGoogle Scholar
  39. 39.
    V. Thakur and S.M. Shivaprasad, Appl. Surf. Sci. 327, 389 (2015).CrossRefGoogle Scholar
  40. 40.
    A.G. Silva, K. Pedersen, Z.S. Li, and P. Morgen, Appl. Surf. Sci. 353, 1208 (2015).CrossRefGoogle Scholar
  41. 41.
    Y. Xu and D. Wu, J. Colloid Surf. A Physicochem. 305, 97 (2007).CrossRefGoogle Scholar
  42. 42.
    I. Karteri, S. Karatas, and F. Yakuphano, Appl. Surf. Sci. 318, 74 (2014).CrossRefGoogle Scholar
  43. 43.
    C. Yang, Y. Kwack, S.H. Kim, T.K. An, K. Hong, S. Nam, M. Park, W.-S. Choi, and C.E. Park, Org. Electron. 12, 411 (2011).CrossRefGoogle Scholar
  44. 44.
    D.O. Hutchins, O. Acton, T. Weidner, N. Cernetic, J.E. Baio, D.G. Castner, and H. Ma, A. K-Y. Jen. Appl. Surf. Sci. 261, 908 (2012).CrossRefGoogle Scholar
  45. 45.
    R.P. Tompkins, I. Mahaboob, S. Shahedipour-sandvik, and N. Lazarus, J. Adv. Electrochem. Sci. Technol. 72, 89 (2016).Google Scholar
  46. 46.
    X. Fang, C. Lin, Y. Sun, H. Chin, H.-W. Zan, H.-F. Meng, S.-F. Horng, and L.A. Wang, Org. Electron. 31, 227 (2016).CrossRefGoogle Scholar
  47. 47.
    P. Kim, X.-H. Zhang, B. Domercq, S.C. Jones, and P.J. Hotchkiss, Appl. Phys. Letter 93, 013302 (2008).CrossRefGoogle Scholar
  48. 48.
    J. Zhang, H. Zhu, and L. Zhang, Org. Electron. 13, 733 (2012).CrossRefGoogle Scholar
  49. 49.
    R. Navamathavan, C.Y. Kim, and A.S. Jung, J. Korean Phys. Soc. 53, 351 (2008).CrossRefGoogle Scholar
  50. 50.
    A. Bahari, J. Nanostruct. 1, 54 (2012).Google Scholar
  51. 51.
    H.T. Oyama and J.P. Wightman, J. Surf. Interface Anal. 26, 39 (1998).CrossRefGoogle Scholar
  52. 52.
    T. Watanabe, S. Hasegawa, N. Wakiyama, F. Usui, A. Kusai, T. Isobe, and M. Senna, J. Solid State Chem. 164, 27 (2002).CrossRefGoogle Scholar
  53. 53.
    M. Shahbazi, A. Bahari, and S. Ghasemi, Organ. Electron 32, 100 (2016).CrossRefGoogle Scholar
  54. 54.
    T.T. Dao and M.H. Murata, IEICE Trans. Electron. E98-c, 422 (2015).CrossRefGoogle Scholar
  55. 55.
    S. Faraji, E. Danesh, D.J. Tate, M.L. Turner, and L.A. Majewski, J. Phys. D Appl. Phys. 49, 185102 (2016).CrossRefGoogle Scholar
  56. 56.
    W. Ye, J. Deng, X. Wang, and L. Cui, Appl. Surf. Sci. 390, 831 (2016).CrossRefGoogle Scholar
  57. 57.
    H.X. Xu, J.P. Xu, C.X. Li, C.L. Chan, and P. T. Lai. Appl. Phys. A 99, 903 (2010).CrossRefGoogle Scholar
  58. 58.
    M.-K, Lee, C.-F, Yen, and C.-H, Fan, Appl. Phys. A 116, 2007 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Solid State PhysicsUniversity of MazandaranBabolsarIran
  2. 2.Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations