Skip to main content
Log in

Seebeck Coefficient of Cation-Substituted Disulfides CuCr1−xFe x S2 and Cu1−xFe x CrS2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of cation substitution on the Seebeck coefficient of CuCr1−xFe x S2 (x = 0 to 0.30) and Cu1−xFe x CrS2 (x = 0 to 0.03) in the temperature range of 100 K to 450 K has been investigated. Increasing iron concentration led to a metal–insulator transition which suppressed the thermoelectric power. However, for low iron concentration (x < 0.03), the Seebeck coefficient of CuCr1−xFe x S2 and Cu1−xFe x CrS2 exceeded the values for the undoped copper-chromium disulfide matrix CuCrS2 at temperature below 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S.S. Thipse, Non conventional and renewable energy sources, 1st ed. (Oxford: Alpha Science International, 2014), p. 354.

    Google Scholar 

  2. D. Srivastava, G.C. Tewari, and M. Karppinen, J. Phys. Condens. Matter 26, 505501 (2014).

    Article  Google Scholar 

  3. C.-G. Han, B.-P. Zhang, Z.-H. Ge, L.-J. Zhang, and Y.-C. Liu, J. Mater. Sci. 48, 4081 (2013).

    Article  Google Scholar 

  4. G.C. Tewari, T.S. Triathi, and A.K. Rastogi, J. Electron. Mater. 39, 1133 (2010).

    Article  Google Scholar 

  5. G.C. Tewari, T.S. Triathi, and A.K. Rastogi, Z. Kristallogr. Cryst. Mater. 225, 471 (2010). https://doi.org/10.1524/zkri.2010.1313.

    Google Scholar 

  6. A. Kaltzoglou, P. Vaqueiro, T. Barbier, E. Guilmeau, and A.V. Powell, J. Electron. Mater. 43, 2029 (2014). https://doi.org/10.1007/s1166401329410.

    Article  Google Scholar 

  7. R.A. Yakshibaev, G.R. Akmanova, and N.N. Bikkulova, Russ. J. Electrochem. 51, 587 (2015).

    Article  Google Scholar 

  8. A. Karmakar, K. Dey, S. Chatterjee, S. Majumdar, and S. Giri, Appl. Phys. Lett. 104, 052906 (2014).

    Article  Google Scholar 

  9. R.F. Al’mukhametov, R.A. Yakshibaev, and A.R. Abdullin, Inorg. Mater. 38, 447 (2002).https://doi.org/10.1103/PhysRevB.92.035302

    Article  Google Scholar 

  10. R.F. Al’mukhametov, R.A. Yakshibaev, and E.V. Gabitov, Phys. Solid State 41, 1327 (1999).

    Article  Google Scholar 

  11. G.M. Abramova and G.A. Petrakovskii, Low Temp. Phys. 32, 725 (2006).

    Article  Google Scholar 

  12. V.A. Varnek, V.V. Sokolov, I.Yu. Filatova, and S.A. Petrov, J. Struct. Chem. 50, 351 (2009).

    Article  Google Scholar 

  13. I.G. Vasil`eva and V.V. Kriventsov, J. Synch. Investig. 4, 640 (2010). https://doi.org/10.1134/S1027451010040178.

    Article  Google Scholar 

  14. Inorganic Crystal Structure Database. Version 2.1.0/FIZ Karlsruhe, Germany.

  15. ADF2014, SCM, Theoretical chemistry (Vrije Universiteit, Amsterdam). The Netherlands. https://www.scm.com.

  16. J. Fraden, Handbook of Modern Sensors, 5th ed. (Berlin: Springer, 2016). https://doi.org/10.1007/s1166401329410

    Google Scholar 

  17. K.V. Shalimova, Semiconductors physics (Moscow: Energoatomizdat, 1985), p. 392.

    Google Scholar 

  18. T. Katase, K. Endo, and H. Ohta, Phys. Rev. B 92, 035302 (2015).

    Article  Google Scholar 

  19. N.F. Mott and E.A. Davis, Electronic process in non-crystalline materials, 2nd ed. (Oxford: Clarendon Press, 1979), p. 605.

    Google Scholar 

  20. I.G. Vasilyeva, J. Struct. Chem. 58, 1009 (2017).

    Article  Google Scholar 

  21. Yu.L. Mikhlin, Zhurnal Obshchei Khimii 55, 80 (2001).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ph.D. Sokolov V.V. (NIIC SB RAS) for assistance in carrying out the synthesis and characterization of the samples studied. The reported study was funded by RFBR according to Research Project No. 16-032-00612_mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy V. Korotaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotaev, E.V., Syrokvashin, M.M., Filatova, I.Y. et al. Seebeck Coefficient of Cation-Substituted Disulfides CuCr1−xFe x S2 and Cu1−xFe x CrS2. J. Electron. Mater. 47, 3392–3397 (2018). https://doi.org/10.1007/s11664-018-6230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6230-9

Keywords

Navigation